
Clober
LiquidityVault
Security Review

HickupHH3

22 January 2025

1

Contents
1 Introduction 3

1.1 Audit Scope . 3
1.2 Audit Timeline . 3
1.3 Fix Review . 4
1.4 Auditors Involved . 4

2 Risk Assessment Classification 5

3 Findings Summary 7
3.1 [Low] Datastream oracle must not exceed 5 price feeds . 8
3.2 [Low] Sanity check that fallbackOracle has same decimals

as DatastreamOracle . 9
3.3 [Low] oraclePrice calculation will revert for very large prices 10
3.4 [Low] Large prcies exceeding uint128 cannot be stored . . 11
3.5 [Info] Incomplete ERC6909 extension implementation . . . 12
3.6 [Info] Use forceApprove instead of approve 13
3.7 [Info] Consider making fee amount mutable 14
3.8 [Info] Additional sanity checks 14

4 Disclaimer 16

2

1 Introduction
The purpose of this audit is to review the Clober LiquidityVault contract,
and its associated dependencies.

1.1 Audit Scope
The scopeconsisted of the clober-rebalancer repository in the mainbranch
at commit hash ef9902e79e0f624b245e33db2611f68f8b1d5189. The repository
namewas subsequently renamed to clober-liquidity-vault. The contracts
found in the src folder that were included in scope were the following:

File

Minter.sol
Operator.sol
Rebalancer.sol1
SimpleOracleStrategy.sol
interfaces/*
oracle/ChainlinkOracle.sol
oracle/DatastreamOracle.sol

1 Rebalancer.sol was renamed to LiquidityVault.sol. The report will retain
the old name as per the reviewed commit hash.

1.2 Audit Timeline
The audit was conducted from 13th January to 17th January.

3

1.3 Fix Review
A review of the fixes was conducted subsequently from 20th January to
22nd January.

1.4 Auditors Involved
HickupHH3

4

2 Risk Assessment Classification
There are 4 possible levels used to assess a vulnerability, with a separate
section for gas optimizations.

High
Directly exploitable vulnerabilities with medium / high likelihood of loss of
user funds, or contract functionality.
Resolving these issues are crucial to ensure the security and functionality
of the contracts.

Medium
Vulnerabilities that relies on external dependencies / conditions to be
met. Potentially leads to a loss of funds or functionality (eg. denial of
service).
Resolving these issues are recommended toavoid undesired consequences.

Low
Issues arising from deviant behaviour than expected, but has no / little
bearing from a security standpoint.

Informational
Issues that relate to security best practices recommendations, grammatical
or styling errors, suggestions for variable/function name improvements
etc. These issues are subjective and can be addressed based on the
client’s discretion.
While these issues may not directly affect the contract’s functionality or
security, addressing them can improve code readability, maintainability,
and overall quality.

5

Gas Optimizations
Suggested changes to the codebase that will help reduce deployment
or runtime gas costs, or to reduce the bytecode size should the limit be
reached.

6

3 Findings Summary

Severity No. of issues

High 0

Medium 0

Low 4

Informational 4

Gas Optimizations 0

Total 8

7

3.1 [Low] Datastream oracle must not exceed 5 price feeds
Context

DatastreamOracle.sol#L162-L171

Details

According to Chainlink’s documentation, the permissible values for the
feeds field is a maximum of 5 IDs.
However, setFeed() does not enforce a maxmimum cap when adding a
new price feed. The theoretical maximum number of feeds supported by
DatastreamOracle is 256, that is, uint256 requestBitmap, which exceeds
Chainlink’s permissible value.
Also, there isn’t a method to prune stored _feedIds. While existing price
feeds can have their asset modified, this may not be sufficient for price
feed replacement.

Mitigation

Ensure that only up to 5 price feeds can be added. Consider adding
a function to replace an existing price feed, though this comes with
tradeoffs.

Response

Fixed at 777f41c.

Status

Fixed. The requests will be split into batches of 5 price feeds, with the
bitmap updated for each batch request.

8

https://github.com/clober-dex/clober-rebalancer/blob/ef9902e79e0f624b245e33db2611f68f8b1d5189/src/oracle/DatastreamOracle.sol##L162-L171
https://docs.chain.link/chainlink-automation/reference/automation-interfaces##streamslookup-revert
https://github.com/clober-dex/clober-rebalancer/pull/46/commits/777f41c742e2385646dfc8493055e070818353e4

3.2 [Low] Sanity check that fallbackOracle has same
decimals as DatastreamOracle

Context

DatastreamOracle.sol#L173-L175

Details

When setting a fallback oracle for the datasteamOracle, its decimals
(precision) may differ, resulting in prices with differing precision returned.

Mitigation

Sanity check that the fallback oracle returns 18 decimals as well.

function setFallbackOracle(address newFallbackOracle) external onlyOwner {
+ if (fallbackOracle.decimals() != 18) revert DifferentPrecision();

fallbackOracle = newFallbackOracle;
emit SetFallbackOracle(newFallbackOracle);

}

Response

Fixed at 9dd01b0.

Status

Fixed.

9

https://github.com/clober-dex/clober-rebalancer/blob/ef9902e79e0f624b245e33db2611f68f8b1d5189/src/oracle/DatastreamOracle.sol##L173-L175
https://github.com/clober-dex/clober-rebalancer/pull/46/commits/9dd01b0c348cc11cbaa34e512583fe1da0945e81

3.3 [Low] oraclePrice calculation will revert for very large
prices

Context

SimpleOracleStrategy.sol#L251

Details

For very large prices, there could be a risk of multiplication overflow when
attempting to do oraclePrice * 10 ** referenceOracle.decimals()). This
is illustrated in the POC below.

function testLargeOraclePriceRevertsFromMulOverflow() public {
// revert from Panic error: integer overflow
vm.expectRevert(stdError.arithmeticError);
strategy.updatePosition(key, Tick.wrap(TickLibrary.MAX_TICK -
10000).toPrice(), Tick.wrap(TickLibrary.MIN_TICK),
Tick.wrap(TickLibrary.MIN_TICK), 1000000);

}

Mitigation

Use Math.mulDiv() for the calculation.

- oraclePrice = (oraclePrice * 10 ** referenceOracle.decimals()) >> 96;
+ oraclePrice = Math.mulDiv(oraclePrice, 10 ** referenceOracle.decimals(), 1

<< 96);

Response

Fixed at 260fad8.

Status

Fixed.

10

https://github.com/clober-dex/clober-rebalancer/blob/ef9902e79e0f624b245e33db2611f68f8b1d5189/src/SimpleOracleStrategy.sol##L251
https://github.com/clober-dex/clober-rebalancer/pull/46/commits/260fad835e3e6fa23aef6e4f90bee9a50a08487e

3.4 [Low] Large prcies exceeding uint128 cannot be stored
Context

SimpleOracleStrategy.sol#L257

Details

After fixing the previous issue of multiplication overflow, another issue
arises when attempting to safely downcast the oracle price to uint128,
as it could theoretically exceed type(uint128).max. This is illustrated in
the POC below.

function testLargeOraclePriceExceedsUint128() public {
_setReferencePrices(1,
uint256(58662020672688495886265712861148522827481680187947892) / 1e18);
// @dev requires fixing oracle calc to use MulDiv first
vm.expectRevert(

abi.encodeWithSelector(
SafeCast.SafeCastOverflowedUintDowncast.selector,
128,
uint256(29331010336344247943132856430574261413740840093973952)

)
);
strategy.updatePosition(key, TickLibrary.MAX_PRICE - 1,
Tick.wrap(TickLibrary.MIN_TICK), Tick.wrap(TickLibrary.MIN_TICK),
1000000);

}

Mitigation

Change the oraclePrice type in Position to uint176. This allows for tight
packing of the Position fields into a single word whilst accomodating
the max price allowable by the Tick library.

struct Position {
bool paused;

- uint128 oraclePrice;
+ uint176 oraclePrice;

11

https://github.com/clober-dex/clober-rebalancer/blob/ef9902e79e0f624b245e33db2611f68f8b1d5189/src/SimpleOracleStrategy.sol##L257

uint24 rate;
Tick tickA;
Tick tickB;

}

- position.oraclePrice = SafeCast.toUint128(oraclePrice);
+ position.oraclePrice = SafeCast.toUint176(oraclePrice);

Response

Fixed at 9e475d9.

Status

Fixed.

3.5 [Info] Incomplete ERC6909 extension implementation
Context

Rebalancer.sol#L67-L69

Details

Looking at the ERC6909 metadata extension spec, the name(), symbol()
and decimals() should be implemented, but ‘Rebalancer only implements
the last method.

Mitigation

Either implement the name()and symbol()methods, or remove the decimals()
funciton, as the metadata extension is optional.

12

https://github.com/clober-dex/clober-rebalancer/pull/46/commits/9e475d9cfaa7f3498dda7276b8d014df361a6ad1
https://github.com/clober-dex/clober-rebalancer/blob/ef9902e79e0f624b245e33db2611f68f8b1d5189/src/Rebalancer.sol##L67-L69
https://eips.ethereum.org/EIPS/eip-6909##metadata-extension

Response

Fixed at 82845fa.

Status

Fixed. The name() and symbol() methods were implemented.

3.6 [Info] Use forceApprove instead of approve
Context

Minter.sol#L84

Details

SafeERC20 is imported, but its forceApprovemethod is not used for approvals.

Mitigation

- IERC20(Currency.unwrap(currency)).approve(spender, amount);
+ IERC20(Currency.unwrap(currency)).forceApprove(spender, amount);

Response

Fixed at d1f5e5e.

Status

Fixed.

13

https://github.com/clober-dex/clober-rebalancer/pull/46/commits/82845fa47918332a286f3de0ae97a631655b3116
https://github.com/clober-dex/clober-rebalancer/blob/ef9902e79e0f624b245e33db2611f68f8b1d5189/src/Minter.sol##L84
https://github.com/clober-dex/clober-rebalancer/pull/46/commits/d1f5e5eba5c581aa749399e339e34c24cbac427e

3.7 [Info] Consider making fee amount mutable
Context

Operator.sol#L48

Details

An immutable flat fee of 0.05 LINK is charged for calling requestOraclePublic().
Consider making this mutable to be able to respond to changing market
conditions.

Response

Fixed at c9f9ee5.

Status

Fixed.

3.8 [Info] Additional sanity checks
Context

Rebalancer.sol#L58
Rebalancer.sol#L230-L233

Details

Consider adding the following checks:
• The immutable burnFeeRate set does not exceed RATE_PRECISION.
• MIN_TICK.toPrice() < oraclePrice < MAX_TICK.toPrice()

14

https://github.com/clober-dex/clober-rebalancer/blob/ef9902e79e0f624b245e33db2611f68f8b1d5189/src/Operator.sol##L48
https://github.com/clober-dex/clober-rebalancer/pull/46/commits/c9f9ee560b333d7b95a1bf923e88135eac84a77d
https://github.com/clober-dex/clober-rebalancer/blob/ef9902e79e0f624b245e33db2611f68f8b1d5189/src/Rebalancer.sol##L58
https://github.com/clober-dex/clober-rebalancer/blob/ef9902e79e0f624b245e33db2611f68f8b1d5189/src/SimpleOracleStrategy.sol##L230-L233

Mitigation

+ if (burnFeeRate_ >= RATE_PRECISION) revert InvalidConfig();
burnFeeRate = burnFeeRate_;

if (
+ oraclePrice < TickLibrary.MIN_PRICE ||
+ oraclePrice > TickLibrary.MAX_PRICE ||

oraclePrice * (RATE_PRECISION + config.priceThresholdA) / RATE_PRECISION
< priceA

|| oraclePrice * (RATE_PRECISION - config.priceThresholdB) /
RATE_PRECISION > priceB

) revert ExceedsThreshold();

Response

Fixed at fcee5f1.

Status

Fixed.

15

https://github.com/clober-dex/clober-rebalancer/pull/46/commits/fcee5f199638d1354832ce411c43780b0749eb50

4 Disclaimer
The audit report provided reflects a thorough review conducted to the
best of my ability. However, it is important to note that the time-boxing
nature of the review and available resources may prevent the discovery
of all potential security vulnerabilities. As such, this audit does not guarantee
the absence of undiscovered vulnerabilities.

Furthermore, please be aware that the security review was conducted
on a specific commit of the codebase, as indicated. Any subsequent
modifications made to the code will necessitate a new security review
to ensure comprehensive coverage.

Note that the contracts used in production and expected deployment
values may defer significantly from what was reviewed.

To ensure a robust evaluation of the codebase, it is highly recommended
to engage multiple auditors and firms, particularly for large and complex
projects. The involvement ofmultiple perspectives can provide additional
insights and potential missed vulnerabilities.

Please consider these factors whenassessing the audit report andmaking
decisions related to the security and reliability of the smart contracts.
The security review is not an endorsement of the project or its team, and
should not be treated as such.

16

	Introduction
	Audit Scope
	Audit Timeline
	Fix Review
	Auditors Involved

	Risk Assessment Classification
	Findings Summary
	ForestGreen [Low] Datastream oracle must not exceed 5 price feeds
	ForestGreen [Low] Sanity check that fallbackOracle has same decimals as DatastreamOracle
	ForestGreen [Low] oraclePrice calculation will revert for very large prices
	ForestGreen [Low] Large prcies exceeding uint128 cannot be stored
	RoyalBlue [Info] Incomplete ERC6909 extension implementation
	RoyalBlue [Info] Use forceApprove instead of approve
	RoyalBlue [Info] Consider making fee amount mutable
	RoyalBlue [Info] Additional sanity checks

	Disclaimer

