

Clober Rebalancer
31/12/24

Trust
Security

Smart Contract Audit

Trust Security Clober Rebalancer

Executive summary

Findings

Severity Total Fixed
High - -
Medium 2 2
Low 1 1

Centralization score

Centralized Decentralized

Signature

Category Liquidity Pool
Audited file count 2
Lines of Code 615
Auditor cccz

carrotsmuggler
Time period 23/12/2024-

29/12/2024

Medium,
2

Low, 1

FINDINGS

Trust Security Clober Rebalancer

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 3

Versioning 3

Contact 3

INTRODUCTION 4

Scope 4

Repository details 4

About Trust Security 4

About the Auditors 4

Disclaimer 5

Methodology 5

QUALITATIVE ANALYSIS 6

FINDINGS 7

Medium severity findings 7
TRST-M-1 Rebalance may not always work even if rebalanceThreshold is 100% 7
TRST-M-2 Incorrect price check in updatePosition() may lead to protocol loss 8

Low severity findings 10
TRST-L-1 Orders can be canceled intentionally 10

Additional recommendations 11
TRST-R-1 Users will lose on withdrawal depending on unitSize precision 11
TRST-R-2 Add tests for oracle with 18 decimals 11

Centralization risks 13
TRST-CR-1 The owner of SimpleOracleStrategy can make orders at a very low price 13

Systemic risks 14
TRST-SR-1 The rebalanceThreshold prevents new deposits from making orders 14

Trust Security Clober Rebalancer

Document properties

Versioning

Version Date Description
0.1 29/12/2024 Client report
0.2 31/12/2024 Mitigation review

Contact

Trust

trust@trust-security.xyz

Trust Security Clober Rebalancer

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on
uncovering security issues and additional bugs contained in the code defined in scope. Some
additional recommendations have also been given when appropriate.

Scope

The following files are in scope of the audit:

• src/Rebalancer.sol
• src/SimpleOracleStrategy.sol

Repository details

• Repository URL: https://github.com/clober-dex/clober-rebalancer
• Commit hash: b5510b36c4abdad6fdb811dd5d8ba949386514ea
• Mitigation review hash: 56729cdae08cd0fa813c691ccf369f45e6af869e

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order
to provide high quality auditing services. Trust is the leading auditor at competitive auditing
service Code4rena, reported several critical issues to Immunefi bug bounty platform and is
currently a Code4rena judge.

About the Auditors

A top competitor in audit contests, cccz has achieved superstar status in the security space.
He is a Black Hat / DEFCON speaker with rich experience in both traditional and blockchain
security.

Carrotsmuggler competes in public audit contests on various platforms with multiple Top 3
finishes. He has experience reviewing contracts on diverse EVM and non-EVM platforms.

Trust Security Clober Rebalancer

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust
Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited
code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of
issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has
been deeply looked at and considered from different adversarial perspectives. Any additional
dependencies on external code have also been reviewed. Fuzz tests and unit tests have also
been used as needed.

Trust Security Clober Rebalancer

Qualitative analysis

Metric Rating Comments
Code complexity

Good Project kept code as simple as
possible, despite implementing
custom data structures for efficiency.

Documentation

Moderate Project is still under active
development and currently lacks
documentation.

Best practices

Good Project generally follows best
practices.

Centralization risks

Good Project does not introduce significant
unnecessary centralization risks.

Trust Security Clober Rebalancer

Findings

Medium severity findings

TRST-M-1 Rebalance may not always work even if rebalanceThreshold is 100%
• Category: Logical issues
• Source: SimpleOracleStrategy.sol
• Status: Fixed

Description

In SimpleOracleStrategy, rebalance is not allowed when cancelable (unfilled) orders are
greater than rebalanceThreshold * lastRawAmounts.

 if (
 lastRawAmounts > 0
 && (
 liquidityA.cancelable
 > (lastRawAmounts >> 128) * bookKeyA.unitSize *
config.rebalanceThreshold / RATE_PRECISION
 || liquidityB.cancelable
 > (lastRawAmounts & LAST_RAW_AMOUNT_MASK) *
bookKeyB.unitSize * config.rebalanceThreshold
 / RATE_PRECISION
)
) {
 return (ordersA, ordersB);
 }

The lastRawAmounts only includes the rawAmount of orders.

 function rebalanceHook(address, bytes32 key, Order[] memory liquidityA, Order[]
memory liquidityB) external {
 if (msg.sender != address(rebalancer)) revert InvalidAccess();
 uint256 lastRawAmountA;
 uint256 lastRawAmountB;
 for (uint256 i = 0; i < liquidityA.length; ++i) {
 IStrategy.Order memory order = liquidityA[i];
 lastRawAmountA += order.rawAmount;
 }

 for (uint256 i = 0; i < liquidityB.length; ++i) {
 IStrategy.Order memory order = liquidityB[i];
 lastRawAmountB += order.rawAmount;
 }
 _lastRawAmounts[key] = (lastRawAmountA << 128) + lastRawAmountB;
 }

However, the cancelable amount may include makerFee.

 function _getLiquidity(FeePolicy makerPolicy, uint64 unitSize, OrderId orderId)
 internal
 view
 returns (uint256 cancelable, uint256 claimable)
 {
 IBookManager.OrderInfo memory orderInfo = bookManager.getOrder(orderId);
 cancelable = uint256(orderInfo.open) * unitSize;

Trust Security Clober Rebalancer

 claimable = orderId.getTick().quoteToBase(uint256(orderInfo.claimable) *
unitSize, false);
 if (makerPolicy.usesQuote()) {
 int256 fee = makerPolicy.calculateFee(cancelable, true);
 cancelable = uint256(int256(cancelable) + fee);

Consider Base token is ETH, Quote token is USDC, ETH/USDC = 3000, and UsesQuote() is true,
makerFee is 10%, rebalanceThreshold is 20%.

Rebalancer offers 3300 USDC (300 USDC of makerFee) to trade 1 ETH. lastRawAmounts will
be 3000 USDC, but cancelable amount will be 3300 USDC.

When 2400 USDC (80%) is filled and 600 USDC (20%) is left cancelable, the cancelable amount
will be 600 * 1.1 = 660 USDC instead of the expected 600 USDC, which results in a larger
rebalanceThreshold than expected.

Since the max rebalanceThreshold is 100%, and the fact that the rebalanceThreshold may be
100% means that the rebalance can be performed at any time. But this would lead to even if
the rebalanceThreshold is 100%, the rebalance can only be performed after the order has
been partially fulfilled.

Recommended mitigation

It is recommended to return rawCancelable without makerFee in getLiquidity() and use it to
calculate rebalanceThreshold.

Team response

Fixed.

Mitigation Review

The fix changes lastRawAmount to lastAmount and stores the amount that includes fees in
lastAmount, which solves the issue.

TRST-M-2 Incorrect price check in updatePosition() may lead to protocol loss
• Category: Logical issues
• Source: SimpleOracleStrategy.sol
• Status: Fixed

Description

Operator will call updatePosition() to update the trading price and it will check that the trading
price is set to make the protocol profitable.

For example, the protocol will be set to buy ETH for 3000 USDC and sell ETH for 3100 USDC,
and the protocol will profit from the difference.

Considering that the makerFee is charged or compensated when making orders, the
priceWithFee, i.e., the price including the makerFee, is checked.

https://github.com/clober-dex/clober-rebalancer

Trust Security Clober Rebalancer

But the problem here is that priceWithFee is calculated incorrectly - it doesn't consider
usesQuote() and the direction is incorrect, which may result in incorrect prices being set, thus
making the protocol lose on the trade.

For example, consider Base token is ETH, Quote token is USDC, ETH/USDC = 3000, and
makerFee is 10%.

When bookA.usesQuote() is true, the maker offers 3300 USDC to trade 1 ETH.

When bookA.usesQuote() is false, the maker offers 3000 USDC to trade 0.9 ETH.

The value of the makerFee is the same, 300 USDC, but the priceWithFee is different. The
former is 3300/1 = 3300 USDC and the latter is 3000/0.9 = 3333 USDC. But the protocol
incorrectly calculates priceWithFee as 3000 *(1-10%) = 2700 for both cases.

The correct calculation should be as follows:

bookA.usesQuote() is true, priceWithFeeA = priceA * (1+makerFee)

bookA.usesQuote() is false, priceWithFeeA = priceA / (1-makerFee)

bookB.usesQuote() is true, priceWithFeeB = priceB / (1+makerFee)

bookB.usesQuote() is false, priceWithFeeB = priceB * (1-makerFee)

Recommended mitigation

It is recommended to change as follows.

- uint256 priceWithFee = uint256(int256(priceA) -
bookKeyA.makerPolicy.calculateFee(priceA, false));
+ uint256 priceWithFeeA = bookKeyA.makerPolicy.usesQuote() ?
uint256(int256(priceA) + bookKeyA.makerPolicy.calculateFee(priceA, false)) :
bookKeyA.makerPolicy.calculateOriginalAmount(priceA, true);
- priceWithFee = uint256(
- int256(priceWithFee) -
bookManager.getBookKey(bookIdB).makerPolicy.calculateFee(priceWithFee, false)
-);
+ IBookManager.BookKey memory bookKeyB = bookManager.getBookKey(bookIdB);
+ uint256 priceWithFeeB = bookKeyB.makerPolicy.usesQuote() ?
bookKeyB.makerPolicy.calculateOriginalAmount(priceB, false) : uint256(int256(priceB) -
bookKeyB.makerPolicy.calculateFee(priceB, false);
- if (priceWithFee >= priceB) revert InvalidPrice();
+ if (priceWithFeeA >= priceWithFeeB) revert InvalidPrice();

Team response

Fixed.

Mitigation Review

The fix implements the recommendation.

https://github.com/clober-dex/clober-rebalancer/pull/41

Trust Security Clober Rebalancer

Low severity findings

TRST-L-1 Orders can be canceled intentionally
• Category: Logical issues
• Source: Rebalancer.sol
• Status: Fixed

Description

When users withdraw funds, orders are canceled in proportion to the shares burned, this
allows malicious users to cancel orders by immediately depositing and withdrawing.

Consider the following scenario:

1. Alice deposits 1000 USDT and 1000 USDC and gets 1000 shares.

2. rebalance() is called and 500 USDT and 500 USDC are used to make orders (50% utilization).

3. Bob deposits 4000 USDT and 4000 USDC, gets 4000 shares, and takes them out immediately.

4. In _burn(), 400 USDC and 400 USDT orders will be cancelled.

In the example above, when Bob withdraws, only 100 USDT and 100 USDC are in orders, and
if the rebalanceThreshold is 10%, the new rebalance() call is allowed only after 90 USDT and
90 USDC have been traded, which may cause the protocol to miss some trading opportunities.

Recommended mitigation

Consider adding lockout periods/deposit withdrawal fees and other measures to prevent
users from intentionally canceling orders.

Team response

Fixed.

Mitigation Review

The fix adds burnFee to increase the cost of intentional order cancellations by malicious users.

https://github.com/clober-dex/clober-rebalancer/pull/43

Trust Security Clober Rebalancer

Additional recommendations

TRST-R-1 Users will lose on withdrawal depending on unitSize precision

When users withdraw funds, orders are canceled in proportion to the shares burned. The
amount of canceled orders is rounded down to intentionally return less assets.

The problem is that orders use unitSize as the minimal unit, so rounding down may cause the
withdrawer to lose up to a unitSize of assets.

 if (orderInfo.open > 0) {
 canceledAmount += bookManager.cancel(
 IBookManager.CancelParams({
 id: orderId,
 toUnit: (orderInfo.open - orderInfo.open * cancelNumerator /
cancelDenominator).toUint64()
 }),
 ""
);
 }

Consider that the Quote token is ETH, the amount of ETH that can be canceled in orders is
1e18, unitSize is 1e12, and totalSupply is 10001. When the user withdraws 120 shares, the
protocol cancels 1e18 / 1e12 * 120 / 10001 = 11998 (11998.8 rounded down to 11998), 11998
* 1e12 = 0.011998 ETH to the user, due to rounding, the user loses 0.0000008 ETH (0.003
USD).

Since this would potentially affect every withdrawal, and the unitSize value in USD is not
capped, there is risk for users to lose significant value in the platform due to rounding,
especially over time.

One option is to calculate the assets amount to be taken out based on all liquidity and send
them directly to the user, not based on canceledAmount.

Another option is to document the following assumptions:

- Up to unitSize of value can be lost on withdrawal.
- The unitSize of any future market should be set to a negligible amount to avoid loss

of value.

TRST-R-2 Add tests for oracle with 18 decimals

MockOracle has 8 decimals, however DatastreamOracle with 18 decimals is already being
used on-chain. It is recommended to update tests to apply MockOracle with 18 decimals.

contract MockOracle is IOracle {
 mapping(address => uint256) private _priceMap;

 bool public isValid = true;

 function decimals() external pure returns (uint8) {
 return 8;

Trust Security Clober Rebalancer

 }

Trust Security Clober Rebalancer

Centralization risks

TRST-CR-1 The owner of SimpleOracleStrategy can make orders at a very low price

In SimpleOracleStrategy, owner can set a large referenceThreshold, then malicious operator
can set a very low price to sell depositors' assets.

Trust Security Clober Rebalancer

Systemic risks

TRST-SR-1 The rebalanceThreshold prevents new deposits from making orders

The protocol only allows rebalance() to be called to create new orders once the current
order has been filled over rebalanceThreshold. It requires BOTH order A and B to be filled, if
order A is completely filled but order B is untouched, rebalance still doesn’t happen.

This may prevent new deposits from creating orders.

