

Clober V2 Protocol
28/02/24

Trust
Security

Smart Contract Audit

Trust Security Clober V2 Protocol

Executive summary

Findings

Severity Total Fixed Open Acknowledged

High 8 8 - -

Medium 9 9 - -

Low 2 2 - -

Centralization score

Centralized Decentralized

Signature

Category Order Book DEX

Audited file count 15

Lines of Code 1620

Auditor cccz
HollaDieWaldfee

Time period 29/01/2024-
08/02/2024

High, 8

Medium, 9

Low, 2

FINDINGS

Trust Security Clober V2 Protocol

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 4

Versioning 4

Contact 4

INTRODUCTION 5

Scope 5

Repository details 5

About Trust Security 5

About the Auditors 6

Disclaimer 6

Methodology 6

QUALITATIVE ANALYSIS 7

FINDINGS 8

High severity findings 8

TRST-H-1 BountyPlatform implements wrong balance check 8

TRST-H-2 BookManager._calculateAmountInReverse() calculation is incorrect 9

TRST-H-3 Hook can bypass delta accounting and drain the BookManager 11

TRST-H-4 Controller.lockAcquired() consumes the tokens approved by users 12

TRST-H-5 Controller._take() misses an increment of spendBaseAmount which bypasses the slippage

check 13

TRST-H-6 NFT can get stuck in Controller and claimed funds can be stolen 15

TRST-H-7 Fee accounting in BookManager is directionally wrong 16

TRST-H-8 Controller slippage control is bypassed for partially filled orders 17

Medium severity findings 20

TRST-M-1 Controller._settle() can be griefed by out-of-sync reservesOf 20

TRST-M-2 Incorrect implementation of Controller._permitERC20() 21

TRST-M-3 Incorrect implementation of Controller._permitERC721() 23

TRST-M-4 BookManager.collect() is missing reservesOf accounting 25

TRST-M-5 DoS in cleanHeap() blocks take() and cancel() 25

TRST-M-6 In Controller.cancel(), ERC721 permit approvals can be front-run 27

TRST-M-7 Controller slippage check does not consider fees 29

TRST-M-8 Book.cancel() needs to remove empty ticks 32

TRST-M-9 Controller reentrancy due to ETH callback 34

Low severity findings 37

TRST-L-1 Controller._take() needs to check if the heap is empty 37

TRST-L-2 Book.calculateClaimableRawAmount() may overflow 38

Trust Security Clober V2 Protocol

Additional recommendations 40

Use latest solmate implementation for ERC20 transfer 40

Controller._provider may be out of sync with BookManager.defaultProvider 41

TickLibrary.toPrice() should call validate() 41

Controller should handle ETH and ERC20 balances uniformly 42

Improve FeePolicy encoding 42

BookManager: remove unused load() functions 43

BookManager.cancel(): perform burn before transfer 43

BookManager should use conservative fee rounding 44

Centralization risks 47

Hooks are fully trusted 47

BookManager owner can set whitelisted providers 47

Systemic risks 48

Books inherit risks of external tokens 48

Books can be griefed with low liquidity ticks 48

NFT transfers can be front-run with claim() and cancel() 49

Trust Security Clober V2 Protocol

Document properties

Versioning

Version Date Description

0.1 08/02/2024 Client report

0.2 16/02/2024 Mitigation review

0.3 28/02/2024 Final mitigation review

Contact

Trust

trust@trust-security.xyz

Trust Security Clober V2 Protocol

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

The following files are in scope of the audit:

• /contracts/Controller.sol

• /contracts/BookManager.sol

• /contracts/hooks/BaseHook.sol

• /contracts/hooks/BountyPlatform.sol

• /contracts/libraries/Book.sol

• /contracts/libraries/BookId.sol

• /contracts/libraries/FeePolicy.sol

• /contracts/libraries/Heap.sol

• /contracts/libraries/Hooks.sol

• /contracts/libraries/Lockers.sol

• /contracts/libraries/Math.sol

• /contracts/libraries/OrderId.sol

• /contracts/libraries/SignificantBit.sol

• /contracts/libraries/Tick.sol

• /contracts/libraries/TotalClaimableMap.sol

Repository details

• Repository URL: https://github.com/clober-dex/v2-core

• Commit hash: 3cc1fca8765ebeca54a6ef2add271e0db76726b4

• Mitigation review hash: 8fc51ac7d7f2111f16554f370e74d6f6e5619819

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Trust is the leading auditor at competitive auditing

service Code4rena, reported several critical issues to Immunefi bug bounty platform and is

currently a Code4rena judge.

https://github.com/clober-dex/v2-core

Trust Security Clober V2 Protocol

About the Auditors

A top competitor in audit contests, cccz has achieved superstar status in the security space.

He is a Black Hat / DEFCON speaker with rich experience in both traditional and blockchain

security.

HollaDieWaldfee is a renowned security expert with a track record of multiple first places in

competitive audits. He is a Lead Senior Watson at Sherlock and Senior Auditor for Trust

Security and Renascence Labs.

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed. Fuzz tests and unit tests have also

been used as needed.

Trust Security Clober V2 Protocol

Qualitative analysis

Metric Rating Comments
Code complexity

Good Project kept code as simple as
possible, despite implementing
custom data structures for efficiency.

Documentation

Moderate Project is still under active
development and currently lacks
documentation.

Best practices

Good Project generally follows best
practices.

Centralization risks

Good If parameters are chosen safely, there
are no centralization risks, except for
removing allowed providers.

Trust Security Clober V2 Protocol

Findings

High severity findings

TRST-H-1 BountyPlatform implements wrong balance check

• Category: Logical flaws

• Source: BountyPlatform.sol

• Status: Fixed

Description

The BountyPlatform.afterMake() function is called after an order has been made and allows

to offer a bounty. To set a bounty, the bounty must be funded and so the BountyPlatform

contract needs to check that its balance has at least increased by an amount that is equal to

the bounty amount.

This check is faulty and instead of checking that the required amount has been added to the

contract’s balance, it is checked that the contract’s balance is at least amount.

This allows an attacker to drain all funds from the BountyPlatform contract by posting a

bounty that is equal to the contract’s balance and then claiming the bounty.

Recommended mitigation

Instead of checking that amount is greater or equal to the BountyPlatform’s balance, amount

should be checked against the difference between the contract’s balance and its stored

balance.

diff --git a/contracts/hooks/BountyPlatform.sol b/contracts/hooks/BountyPlatform.sol
index aed0e84..296ac82 100644
--- a/contracts/hooks/BountyPlatform.sol
+++ b/contracts/hooks/BountyPlatform.sol
@@ -43,7 +43,7 @@ contract BountyPlatform is BaseHook, Ownable2Step, IBountyPlatform {
 Bounty memory bounty = abi.decode(hookData, (Bounty));
 uint256 amount = _getAmount(bounty);
 if (amount > 0) {
- if (bounty.currency.balanceOfSelf() < amount) revert
NotEnoughBalance();
+ if (bounty.currency.balanceOfSelf() - balance[bounty.currency] <
amount) revert NotEnoughBalance();
 balance[bounty.currency] += amount;
 _bountyMap[id] = bounty;
 emit BountyOffered(id, bounty.currency, amount);

Team response

Fixed.

Mitigation Review

The recommendation has been implemented with a minor gas optimization.

https://github.com/clober-dex/v2-core/pull/24

Trust Security Clober V2 Protocol

TRST-H-2 BookManager._calculateAmountInReverse() calculation is incorrect

• Category: Logical flaws

• Source: BookManager.sol

• Status: Fixed

Description

The BookManager._calculateAmountInReverse() function is used in BookManager.cancel().

The function is needed to account for the fees the user has paid (positive maker fee rate) or

the fees they have received (negative maker fee rate) when creating the order.

However, the calculation is incorrect. This can be easily recognized for positive maker fee rates

as they cause an underflow which makes cancellation impossible.

Negative maker fee rates are even more impactful as they allow the user to receive more

funds from cancellation than he has initially paid, effectively allowing him to drain the

BookManager.

function _calculateAmountInReverse(uint256 amount, int24 rate) internal pure returns
(uint256 adjustedAmount) {
 uint256 fee = Math.divide(amount * uint256(_RATE_PRECISION),
uint256(_RATE_PRECISION - rate), rate < 0);
 adjustedAmount = rate > 0 ? amount - fee : amount + fee;
}

Assume 𝑎𝑚𝑜𝑢𝑛𝑡 = 1000 and 𝑟𝑎𝑡𝑒 = −2000 (−0.2%), we then have 𝑓𝑒𝑒 = 1000 ∗ 1𝑒6/

(1𝑒6 + 2000) = 999 (rounded up). Hence, 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐴𝑚𝑜𝑢𝑛𝑡 = 1000 + 999 = 1999. The

loss to the protocol is 1999 − 998 = 1001 with 998 being the correct reverse quote amount

that accounts for the fee that has been paid out to the maker.

Recommended mitigation

We propose implementing the following formula instead.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 4965f8c..2874aa1 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -366,8 +366,13 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit
{
 }

 function _calculateAmountInReverse(uint256 amount, int24 rate) internal pure
returns (uint256 adjustedAmount) {
- uint256 fee = Math.divide(amount * uint256(_RATE_PRECISION),
uint256(_RATE_PRECISION - rate), rate < 0);
- adjustedAmount = rate > 0 ? amount - fee : amount + fee;
+ bool positive = rate > 0;
+ uint256 absRate;
+ unchecked {
+ absRate = uint256(uint24(positive ? rate : -rate));
+ }
+ uint256 absFee = Math.divide(amount * absRate, uint256(_RATE_PRECISION),
!positive);
+ adjustedAmount = positive ? amount + absFee : amount - absFee;
 }

Trust Security Clober V2 Protocol

First, the absRate is calculated. Based on this rate we calculate the absFee that has been paid

or received for the amount. We round up the amount the maker must pay upon cancellation

and round down the amount the maker receives upon cancellation. Finally, we add absFee to

amount if the maker receives a refund of the fee and subtract absFee from amount if the

maker has to pay back the fee.

Team response

Fixed.

Mitigation Review

The _calculateAmountInReverse() function has been fixed and renamed to

_calculateOriginalAmount(). It has been recognized that the same behavior can be achieved

by slightly modifying the calculateFee() function.

This means the _calculateOriginalAmount() function is currently never used and should be

removed.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 00d6f8c..890ea20 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -358,16 +358,6 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit
{
 currencyDelta[locker][currency] = next;
 }

- function _calculateOriginalAmount(uint256 amount, int24 rate) internal pure
returns (uint256 originalAmount) {
- bool positive = rate > 0;
- uint256 absRate;
- unchecked {
- absRate = uint256(uint24(positive ? rate : -rate));
- }
- uint256 absFee = Math.divide(amount * absRate,
FeePolicyLibrary.RATE_PRECISION, !positive);
- originalAmount = positive ? amount + absFee : amount - absFee;
- }
-
 function load(bytes32 slot) external view returns (bytes32 value) {
 assembly {
 value := sload(slot)

In addition, the calculation of the fee refund in BookManager.cancel() lacks a check whether

the maker fee uses the quote. As a result, the fee is repaid regardless of whether it has been

paid in BookManager.make().

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 00d6f8c..c295fea 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -226,8 +226,10 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit
{

 unchecked {
 canceledAmount = uint256(canceled) * key.unit;
- int256 quoteFee = key.makerPolicy.calculateFee(canceledAmount, true);
- canceledAmount = uint256(int256(canceledAmount) + quoteFee);
+ if (params.key.makerPolicy.usesQuote()) {
+ int256 quoteFee = key.makerPolicy.calculateFee(canceledAmount, true);

https://github.com/clober-dex/v2-core/pull/22

Trust Security Clober V2 Protocol

+ canceledAmount = uint256(int256(canceledAmount) + quoteFee);
+ }
 }

 if (pending == 0) _burn(OrderId.unwrap(params.id));

Team response

Fix1,Fix2.

Final Mitigation Review

The fix implements the recommendation.

TRST-H-3 Hook can bypass delta accounting and drain the BookManager

• Category: Reentrancy attacks

• Source: BookManager.sol

• Status: Fixed

Description

By executing the following sequence of actions, all funds in the BookManager can be stolen

within a single transaction:

1. open() a new Book with a malicious Hook that has an afterOpen() callback

2. The afterOpen() callback is executed and Hook is set as the current hook in

Lockers.setCurrentHook()

3. The Hook can now pass the onlyByLocker modifier

4. Hook withdraws all funds via BookManager.withdraw()

5. No delta checks are applied since the call to the Hook is not wrapped in a call to

BookManager.lock()

Recommended mitigation

As the root cause it was identified that hooks must not be able to pass the onlyByLocker

modifier in a context that is not wrapped in a BookManager.lock() call. There exist different

options to fix this issue. The following two are likely the best options:

1. Add the onlyByLocker modifier to all functions that contain a hook callback.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 4965f8c..ae53a92 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -76,7 +76,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 }
 }

- function open(BookKey calldata key, bytes calldata hookData) external {
+ function open(BookKey calldata key, bytes calldata hookData) external
onlyByLocker {
 // @dev Also, the book opener should set unit at least circulatingTotalSupply
/ type(uint64).max to avoid overflow.
 // But it is not checked here because it is not possible to check it
without knowing circulatingTotalSupply.
 if (key.unit == 0) revert InvalidUnit();
@@ -203,7 +203,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {

https://github.com/clober-dex/v2-core/pull/59
https://github.com/clober-dex/v2-core/pull/52

Trust Security Clober V2 Protocol

 emit Take(bookId, msg.sender, tick, takenAmount);
 }

- function cancel(CancelParams calldata params, bytes calldata hookData) external {
+ function cancel(CancelParams calldata params, bytes calldata hookData) external
onlyByLocker {
 address owner = _requireOwned(OrderId.unwrap(params.id));
 _checkAuthorized(owner, msg.sender, OrderId.unwrap(params.id));

@@ -233,7 +233,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 emit Cancel(params.id, canceled);
 }

- function claim(OrderId id, bytes calldata hookData) external {
+ function claim(OrderId id, bytes calldata hookData) external onlyByLocker {
 // @dev Load owner with nonexistent token check.
 // We don't need to check the authorization because claiming another
user's order is allowed.
 address owner = _requireOwned(OrderId.unwrap(id));

2. Remove the ability for hooks to call onlyByLocker protected functions.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 4965f8c..192bdc9 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -58,7 +58,6 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 address locker = Lockers.getCurrentLocker();
 IHooks hook = Lockers.getCurrentHook();
 if (caller == locker) return;
- if (caller == address(hook) && hook.hasPermission(Hooks.ACCESS_LOCK_FLAG))
return;
 revert LockedBy(locker, address(hook));
 }

We recommend implementing option 1 rather than option 2 since it’s the behavior

implemented by Uniswap V4 (following the Uniswap V4 implementation makes development

of Clober V2 periphery easier as concepts from Uniswap V4 can continue to be adopted).

However, implementing option 1 breaks the functionality in Controller.claim() and

Controller.cancel(). Given that Controller contains a lot of issues and requires broader

refactoring, this shouldn’t be too much of a constraint.

Team response

Fixed.

Mitigation Review

The issue has been fixed as recommended by implementing option 1.

TRST-H-4 Controller.lockAcquired() consumes the tokens approved by users

• Category: Missing input validation

• Source: Controller.sol

• Status: Fixed

Description

https://github.com/clober-dex/v2-core/pull/41

Trust Security Clober V2 Protocol

In addition to the path Controller.execute() -> BookManager.lock() ->

Controller.lockAcquired(), attack can call BookManager.lock() -> Controller.lockAcquired()

directly, so that they can control the data in Controller.lockAcquired().

For users that have given approval to the Controller, the following attack is possible:

1. The attacker directly calls BookManager.lock(), where locker is the Controller

contract, and data is made of the victim's address (e.g. unlimited approved user) and

a low price (Sell 1 ETH for 0.1 USDC).

2. Controller.lockAcquired() will transfer tokens from the victim to create the order.

3. The attacker takes the order and profits from the price difference.

Recommended mitigation

It is recommended to use the lockCaller parameter of Controller.lockAcquired() and require

that lockCaller == address(this), i.e., the call is required to be initiated from the Controller.

--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -69,8 +69,9 @@ contract Controller is IController, ILocker {
 return tick.toPrice();
 }

- function lockAcquired(address, bytes memory data) external returns (bytes memory
returnData) {
+ function lockAcquired(address lockCaller, bytes memory data) external returns
(bytes memory returnData) {
 if (msg.sender != address(_bookManager)) revert InvalidAccess();
+ if (lockCaller != address(this)) revert InvalidAccess();
 (
 address user,
 Action[] memory actionList,

Team response

Fixed.

Mitigation Review

The fix implements the recommendation.

TRST-H-5 Controller._take() misses an increment of spendBaseAmount which bypasses

the slippage check

• Category: Logical flaws

• Source: Controller.sol

• Status: Fixed

Description

The loop execution in Controller._take() is terminated when leftQuoteAmount <=

quoteAmount.

 function _take(TakeOrderParams memory params) internal {
 IBookManager.BookKey memory key = _bookManager.getBookKey(params.id);

https://github.com/clober-dex/v2-core/pull/15

Trust Security Clober V2 Protocol

 uint256 leftQuoteAmount = params.quoteAmount;
 uint256 spendBaseAmount;

 uint256 quoteAmount;
 uint256 baseAmount;
 while (leftQuoteAmount > quoteAmount) {
 unchecked {
 leftQuoteAmount -= quoteAmount;
 spendBaseAmount += baseAmount;
 }
 (quoteAmount, baseAmount) = _bookManager.take(
 IBookManager.TakeParams({key: key, maxAmount:
leftQuoteAmount.divide(key.unit, true).toUint64()}),
 params.hookData
);
 if (quoteAmount == 0) break;
 }
 if (params.maxBaseAmount < spendBaseAmount) revert ControllerSlippage();
 }

This means spendBaseAmount is not incremented after the last loop iteration, i.e., when all

the remaining quote amount has been taken, leading to a wrong slippage check.

Assume the scenario when the entire quote amount is taken at the first tick. Then,

spendBaseAmount is never incremented and is equal to zero. This completely bypasses the

slippage check and can lead to an immediate loss to the user.

Recommended mitigation

The suggested fix for this specific problem is given below. Note that this needs to be integrated

with the other fixes for the slippage control.

diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index ece42c4..f31058a 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -215,13 +215,13 @@ contract Controller is IController, ILocker {
 while (leftQuoteAmount > quoteAmount) {
 unchecked {
 leftQuoteAmount -= quoteAmount;
- spendBaseAmount += baseAmount;
 }
 (quoteAmount, baseAmount) = _bookManager.take(
 IBookManager.TakeParams({key: key, maxAmount:
leftQuoteAmount.divide(key.unit, true).toUint64()}),
 params.hookData
);
 if (quoteAmount == 0) break;
+ spendBaseAmount += baseAmount;
 }
 if (params.maxBaseAmount < spendBaseAmount) revert ControllerSlippage();
 }

Team response

Fixed.

Mitigation Review

The referenced PR implements the recommendation.

https://github.com/clober-dex/v2-core/pull/20

Trust Security Clober V2 Protocol

However, both the Controller._take() and Controller._spend() function have been heavily

refactored in the latest commit. They use a different slippage control mechanism by checking

that limitPrice >= lowest tick. Hence, the spendBaseAmount variable has been removed

entirely and the issue has been fixed.

TRST-H-6 NFT can get stuck in Controller and claimed funds can be stolen

• Category: Logical flaws

• Source: Controller.sol

• Status: Fixed

Description

Before calling BookManager.claim() or BookManager.cancel(), the Controller transfers the

NFT from the user to itself.

Hence it is critical that the NFT (in case it has not been burned) is transferred back to the user

after the operation in the BookManager has been performed.

The problem is that the following check might fail when trying to transfer the NFT back.

try _bookManager.cancel(
 IBookManager.CancelParams({id: params.id, to: (params.leftQuoteAmount /
key.unit).toUint64()}),
 params.hookData
) {} catch {}
if (_bookManager.getOrder(params.id).claimable > 0 || params.leftQuoteAmount > 0) {
 _bookManager.transferFrom(address(this), user, orderId);
}

In particular, claimable might be zero and leftQuoteAmount might be zero, but since the

cancellation has failed, leftQuoteAmount=0 might not imply that

_bookManager.getOrder(params.id).open == 0. This means the NFT is not transferred back

even though it still represents an open order.

This scenario can occur in multiple ways. For example:

1. Attacker front-runs a cancellation for an order to take it partially, this may make the

cancellation fail. They then call BookManager.claim() for the order such that the

claimable > 0 check does not apply.

2. The beforeCancel() hook returns early.

3. The attacker creates empty ticks with Controller.make(0) and makes the call to

cleanHeap() revert.

Note that once the NFT is stuck in the Controller it cannot be recovered anymore and any user

can claim its claimable funds and steal them from the Controller.

Recommended mitigation

The Controller.cancel() function should be fixed like so:

diff --git a/contracts/Controller.sol b/contracts/Controller.sol

Trust Security Clober V2 Protocol

index ece42c4..e0f067b 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -280,7 +280,7 @@ contract Controller is IController, ILocker {
 IBookManager.CancelParams({id: params.id, to: (params.leftQuoteAmount /
key.unit).toUint64()}),
 params.hookData
) {} catch {}
- if (_bookManager.getOrder(params.id).claimable > 0 || params.leftQuoteAmount
> 0) {
+ if (_bookManager.getOrder(params.id).claimable > 0 ||
_bookManager.getOrder(params.id).open > 0) {
 _bookManager.transferFrom(address(this), user, orderId);
 }

The same issue exists for Controller.claim() when the beforeClaim() hook returns early. We

recommend the following fix:

diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index ece42c4..d565a4d 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -262,7 +262,7 @@ contract Controller is IController, ILocker {
 if (_bookManager.getApproved(orderId) == address(this)) {
 _bookManager.transferFrom(user, address(this), orderId);
 _bookManager.claim(params.id, params.hookData);
- if (_bookManager.getOrder(params.id).open > 0) {
+ if (_bookManager.getOrder(params.id).open > 0 ||
_bookManager.getOrder(params.id).claimable > 0) {
 _bookManager.transferFrom(address(this), user, orderId);
 }
 } else {

Team response

Fixed.

Mitigation Review

The fix has moved the NFT transfers into the execute() function and the recommended check

has been implemented. All NFTs that have been transferred to the Controller are now

transferred back if orderInfo.claimable > 0 || orderInfo.open > 0, i.e., if the NFT still exists.

TRST-H-7 Fee accounting in BookManager is directionally wrong

• Category: Logical flaws

• Source: BookManager.sol

• Status: Fixed

Description

A positive maker / taker fee rate means the maker / taker has to pay the fee, while a negative

maker / taker fee rate means the maker / taker is getting paid the fee. Therefore in

Controller.make(), quoteDelta needs to be increased for positive fees and decreased for

negative fees.

 if (!params.key.makerPolicy.useOutput()) {
 quoteDelta -= _calculateFee(quoteAmount, params.key.makerPolicy.rate());

https://github.com/clober-dex/v2-core/pull/8

Trust Security Clober V2 Protocol

 }

In Controller.take(), baseDelta also needs to be increased for positive fees and decreased for

negative fees.

 } else {
 baseDelta -= _calculateFee(baseAmount, params.key.takerPolicy.rate());
 }

Recommended mitigation

The following fix will correct the fee accounting.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 4965f8c..774864c 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -157,7 +157,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 int256 quoteDelta = quoteAmount.toInt256();

 if (!params.key.makerPolicy.useOutput()) {
- quoteDelta -= _calculateFee(quoteAmount, params.key.makerPolicy.rate());
+ quoteDelta += _calculateFee(quoteAmount, params.key.makerPolicy.rate());
 }

 _accountDelta(params.key.quote, quoteDelta);
@@ -192,7 +192,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 if (params.key.takerPolicy.useOutput()) {
 quoteDelta -= _calculateFee(quoteAmount,
params.key.takerPolicy.rate());
 } else {
- baseDelta -= _calculateFee(baseAmount,
params.key.takerPolicy.rate());
+ baseDelta += _calculateFee(baseAmount,
params.key.takerPolicy.rate());
 }
 _accountDelta(params.key.quote, -quoteDelta);
 _accountDelta(params.key.base, baseDelta);

Team response

Fixed.

Mitigation Review

The fix implements the recommendation.

TRST-H-8 Controller slippage control is bypassed for partially filled orders

• Category: Logical flaws

• Source: Controller.sol

• Status: Fixed

Description

https://github.com/clober-dex/v2-core/pull/22

Trust Security Clober V2 Protocol

The slippage control in Controller._take() is implemented by checking that spendBaseAmount

<= params.maxBaseAmount, while in Controller._spend() it is implemented by checking that

takenQuoteAmount >= params.minQuoteAmount.

There are multiple ways in which these checks can be bypassed, one of these can even be

controlled by an attacker. The root cause is that implementing slippage control in this way

doesn’t account for partially filled orders.

Bypass 1:

BookManager.take() can return early due to the hook.

As a result, Controller._take() breaks out of the loop.

This can make the slippage check pass even though for the part of the quote amount that

could be matched, the price might have been a lot higher than expected.

In Controller._spend() the slippage control would just end up being more restrictive.

Bypass 2:

An empty tick causes Controller._take() to return early. If the lowest tick is empty, then depth

is 0, and quoteAmount=0

An attacker can call BookManager.make(0) to insert a tick with zero depth.

If the victim calls Controller._take() and the amount they take makes the price reach the zero

depth tick this means the slippage control is bypassed.

The impact is the same as in Bypass 1.

Bypass 3:

leftQuoteAmount may be rounded down to zero due to division by key.unit.

If the total value of params.quoteAmount was very low (say 1.5 units), this can make a big

difference in terms of slippage.

Recommended mitigation

There are two recommended ways to fix the issue.

1) Revert if the limitPrice is exceeded.

diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index ece42c4..81a2b05 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -213,6 +213,7 @@ contract Controller is IController, ILocker {
 uint256 quoteAmount;
 uint256 baseAmount;
 while (leftQuoteAmount > quoteAmount) {
+ if (params.limitPrice < _bookManager.getRoot(params.id).toPrice()) revert
ControllerSlippage();
 unchecked {
 leftQuoteAmount -= quoteAmount;
 spendBaseAmount += baseAmount;
@@ -234,6 +235,7 @@ contract Controller is IController, ILocker {

 while (leftBaseAmount > 0 && !_bookManager.isEmpty(params.id)) {
 Tick tick = _bookManager.getRoot(params.id);

https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/Controller.sol#L226
https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/Controller.sol#L251
https://github.com/clober-dex/v2-core/blob/9239d93ac9e1bd04b6cd289b0fe5c7c6ee8cf942/contracts/BookManager.sol#L193
https://github.com/clober-dex/v2-core/blob/9239d93ac9e1bd04b6cd289b0fe5c7c6ee8cf942/contracts/Controller.sol#L217
https://github.com/clober-dex/v2-core/blob/9239d93ac9e1bd04b6cd289b0fe5c7c6ee8cf942/contracts/Controller.sol#L242
https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/Controller.sol#L221

Trust Security Clober V2 Protocol

+ if (params.limitPrice < tick.toPrice()) revert ControllerSlippage();
 (uint256 quoteAmount, uint256 baseAmount) = _bookManager.take(
 IBookManager.TakeParams({
 key: key,

2) Calculate an average execution price at the end of the function and check that it's <=

limitPrice.

In both cases the limitPrice variable which already exists in the TakeOrderParams and

SpendOrderParams structs can be used for this check.

Team response

Fixed.

Mitigation Review

The first suggestion has been implemented with regards to using a limitPrice and the slippage

control now works for partially filled orders.

Instead of reverting if the limitPrice is exceeded, the function breaks. This is just a convention

and does not impact the effectiveness of the slippage control.

https://github.com/clober-dex/v2-core/pull/44

Trust Security Clober V2 Protocol

Medium severity findings

TRST-M-1 Controller._settle() can be griefed by out-of-sync reservesOf

• Category: Griefing attacks

• Source: Controller.sol

• Status: Fixed

Description

Once the call to Controller.lockAcquired() is over, execution is resumed in BookManager.lock()

and it is checked that nonzeroDeltaCount=0.

To resolve a positive delta, the Controller._settle() function simply sends the amounts of funds

equal to the size of the delta but it does not account for the funds that have already been sent

to the BookManager.

 function settle(Currency currency) external payable onlyByLocker returns (uint256
paid) {
 uint256 reservesBefore = reservesOf[currency];
 reservesOf[currency] = currency.balanceOfSelf();
 paid = reservesOf[currency] - reservesBefore;
 // subtraction must be safe
 _accountDelta(currency, -(paid.toInt256()));
 }

If a griefer has sent an arbitrarily small amount of funds, the delta becomes negative. This

means that the nonzeroDeltaCount=0 check in BookManager.lock() fails, and the transaction

reverts.

Recommended mitigation

It is recommended to simply try to cover the positive currencyDelta. If there are additional

tokens in the BookManager it would withdraw them again.

This is the most efficient solution in almost all circumstances.

 function _settleTokens(address user, ERC20PermitParams[] memory relatedTokenList)
internal {
 uint256 length = relatedTokenList.length;
 _permitERC20(relatedTokenList);
 Currency native = CurrencyLibrary.NATIVE;
 int256 currencyDelta = _bookManager.currencyDelta(address(this), native);
 if (currencyDelta > 0) {
 native.transfer(address(_bookManager), uint256(currencyDelta));
 _bookManager.settle(native);
+ }
+ int256 currencyDelta = _bookManager.currencyDelta(address(this), native);
+ if (currencyDelta < 0) {
- } else if (currencyDelta < 0) {
 _bookManager.withdraw(CurrencyLibrary.NATIVE, user, uint256(-
currencyDelta));
 }
 for (uint256 i = 0; i < length; ++i) {
 Currency currency = Currency.wrap(relatedTokenList[i].token);
 currencyDelta = _bookManager.currencyDelta(address(this), currency);
 if (currencyDelta > 0) {
 IERC20(relatedTokenList[i].token).safeTransferFrom(user,
address(_bookManager), uint256(currencyDelta));
 _bookManager.settle(currency);

Trust Security Clober V2 Protocol

+ }
+ int256 currencyDelta = _bookManager.currencyDelta(address(this), native);
+ if (currencyDelta < 0) {
- } else if (currencyDelta < 0) {
 _bookManager.withdraw(Currency.wrap(relatedTokenList[i].token), user,
uint256(-currencyDelta));
 }
 uint256 balance =
IERC20(relatedTokenList[i].token).balanceOf(address(this));
 if (balance > 0) {
 IERC20(relatedTokenList[i].token).transfer(user, balance);
 }
 }
 if (address(this).balance > 0) native.transfer(user, address(this).balance);
 }

Team response

Fixed.

Mitigation Review

The fix implements the recommendation.

TRST-M-2 Incorrect implementation of Controller._permitERC20()

• Category: Logical flaws

• Source: Controller.sol

• Status: Fixed

Description

Controller._permitERC20() uses signatures to approve Controller to consume user tokens,

where the owner parameter is currently set to msg.sender.

 function _permitERC20(ERC20PermitParams[] memory permitParamsList) internal {
 uint256 length = permitParamsList.length;
 for (uint256 i = 0; i < length; ++i) {
 ERC20PermitParams memory permitParams = permitParamsList[i];
 if (permitParams.signature.deadline > 0) {
 try IERC20Permit(permitParams.token).permit(
 msg.sender,
 address(this),
...
 function permit(
 address owner,
 address spender,
 uint256 value,
 uint256 deadline,
 uint8 v,
 bytes32 r,
 bytes32 s
) public virtual {

However, notice that lockAcquired() calls _settleTokens() and _settleTokens() calls

_permitERC20(). Since lockAcquired() is called by _bookManager, it means that the

msg.sender in _permitERC20() is _bookManager, not the user.

https://github.com/clober-dex/v2-core/pull/28

Trust Security Clober V2 Protocol

 function lockAcquired(address, bytes memory data) external returns (bytes memory
returnData) {
 if (msg.sender != address(_bookManager)) revert InvalidAccess();
 ...
 _settleTokens(user, relatedTokenList);
...
 function _settleTokens(address user, ERC20PermitParams[] memory relatedTokenList)
internal {
 uint256 length = relatedTokenList.length;
 _permitERC20(relatedTokenList);

In the worst case scenario, since the signature here won't be used, a malicious user can steal

the signature.

Combined with TRST-H-4, there is a risk of signature abuse. Note that TRST-H-4 makes ERC20

signatures fundamentally incompatible since they can be front-run. This finding deals with the

fact that calls to permit() currently revert due to the incorrect parameter.

ERC20 signature abuse:

1. Alice signs to approve the Controller to use her tokens, calls execute() with the

signature as parameter to create an order, however the transaction fails due to the

error in _permitERC20().

2. Bob steals Alice's signature from the transaction and manually calls

BookManager.permit() to approve the Controller to use Alice's tokens.

3. Bob calls BookManager.lock(address(Controller),data), constructs the data using

Alice's address and malicious data (say a low price), and makes

permitParams.deadline = 0. After this in _settleTokens(), the _permitERC20()

function will just return.

4. BookManager.lock() calls the Controller.lockAcquired() function and then transfers

tokens from Alice to settle the delta for the order.

5. Bob takes Alice's order at a low price.

Recommended mitigation

It is recommended to add the user parameter to _permitERC20() and use user instead of

msg.sender as the owner when calling permit().

diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index ece42c4..7da5fa5 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -287,7 +287,7 @@ contract Controller is IController, ILocker {

 function _settleTokens(address user, ERC20PermitParams[] memory relatedTokenList)
internal {
 uint256 length = relatedTokenList.length;
- _permitERC20(relatedTokenList);
+ _permitERC20(relatedTokenList, user);
 Currency native = CurrencyLibrary.NATIVE;
 int256 currencyDelta = _bookManager.currencyDelta(address(this), native);
 if (currencyDelta > 0) {
@@ -313,13 +313,13 @@ contract Controller is IController, ILocker {
 if (address(this).balance > 0) native.transfer(user, address(this).balance);
 }

- function _permitERC20(ERC20PermitParams[] memory permitParamsList) internal {
+ function _permitERC20(ERC20PermitParams[] memory permitParamsList, address user)
internal {

Trust Security Clober V2 Protocol

 uint256 length = permitParamsList.length;
 for (uint256 i = 0; i < length; ++i) {
 ERC20PermitParams memory permitParams = permitParamsList[i];
 if (permitParams.signature.deadline > 0) {
 try IERC20Permit(permitParams.token).permit(
- msg.sender,
+ user,
 address(this),
 permitParams.permitAmount,
 permitParams.signature.deadline,

Team response

Fixed.

Mitigation Review

Controller_permitERC20() is now called outside of BookManager.lock(), in a context where

msg.sender is the user, not the BookManager. This means the recommended change is not

necessary and the issue is fixed.

TRST-M-3 Incorrect implementation of Controller._permitERC721()

• Category: Logical flaws

• Source: Controller.sol

• Status: Fixed

Description

Controller._permitERC721() uses signatures to approve Controller to use the user's NFT, but

the spender here is msg.sender and not Controller.

 function _permitERC721(uint256 tokenId, PermitSignature memory permitParams)
internal {
 if (permitParams.deadline > 0) {
 try IERC721Permit(address(_bookManager)).permit(
 msg.sender, tokenId, permitParams.deadline, permitParams.v,
permitParams.r, permitParams.s
) {} catch {}
 }
 }
...
 function permit(address spender, uint256 tokenId, uint256 deadline, uint8 v,
bytes32 r, bytes32 s)
 external
 override
 {

Again, combined with TRUST-H-4 there is an increased risk of signature abuse:

1. Alice creates a signature to approve the Controller to use her NFT, calls execute() with

the signature as parameter to cancel an order partially from amount 100 to amount

50 , however the transaction fails due to the error in _permitERC721().

2. Bob steals Alice's signature from the transaction and manually calls

BookManager.permit() to approve the Controller to use Alice's NFT.

https://github.com/clober-dex/v2-core/pull/8

Trust Security Clober V2 Protocol

3. Bob calls BookManager.lock(address(Controller),data), and constructs the data using

Alice's address and malicious data (cancel from 100 to 0).

4. BookManager.lock() will call the Controller.lockAcquired() function and then cancel

Alice's order from 100 to 0 but Alice's expectation is from 100 to 50.

Recommended mitigation

It is recommended to use address(this) instead of msg.sender as the spender when calling

permit().

diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index ece42c4..55da128 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -334,7 +334,7 @@ contract Controller is IController, ILocker {
 function _permitERC721(uint256 tokenId, PermitSignature memory permitParams)
internal {
 if (permitParams.deadline > 0) {
 try IERC721Permit(address(_bookManager)).permit(
- msg.sender, tokenId, permitParams.deadline, permitParams.v,
permitParams.r, permitParams.s
+ address(this), tokenId, permitParams.deadline, permitParams.v,
permitParams.r, permitParams.s
) {} catch {}
 }
 }

Team response

Fixed.

Mitigation Review

The issue still exists. It is still needed to set spender=address(this) instead of msg.sender.

The downstream functions in the BookManager require that the Controller is approved, not

the user that has called the Controller.

diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index bc1b878..ad27403 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -385,7 +385,7 @@ contract Controller is IController, ILocker, ReentrancyGuard {
 PermitSignature memory signature = permitParamsList[i].signature;
 if (signature.deadline > 0) {
 try IERC721Permit(address(_bookManager)).permit(
- msg.sender, permitParamsList[i].tokenId, signature.deadline,
signature.v, signature.r, signature.s
+ address(this), permitParamsList[i].tokenId, signature.deadline,
signature.v, signature.r, signature.s
) {} catch {}
 }
 }

Team response

Fixed.

Final Mitigation Review

https://github.com/clober-dex/v2-core/pull/8
https://github.com/clober-dex/v2-core/pull/51

Trust Security Clober V2 Protocol

The fix implements the recommendation.

TRST-M-4 BookManager.collect() is missing reservesOf accounting

• Category: Logical flaws

• Source: BookManager.sol

• Status: Fixed

Description

The reservesOf accounting is missing from the BookManager.collect() function.

Consider the following scenario:

1. Maker fee = Taker fee = 2%.

2. Alice calls BookManager.make() with quoteAmount=1000, quoteFee=20. In

BookManager.settle() it sets reservesOf[quote]=1020.

3. Bob calls BookManager.take() with takenAmount=100 and baseFee=2. In

BookManager.withdraw() it sets reservesOf[quote]=1020-1000=20. In

BookManager.settle() it sets reservesOf[base]=102.

4. Alice calls BookManager.claim() and sets reservesOf[base] = 2.

5. provider collects the fees, but reservesOf[base] is still 2, reservesOf[quote] is still 20

As a result of this incorrect accounting, once users need to call BookManager.settle() again to

settle a positive delta, they need to overpay.

Recommended mitigation

It is recommended to add the missing accounting step in BookManager.collect().

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 4965f8c..c01c745 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -296,6 +296,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {

 function collect(address provider, Currency currency) external {
 uint256 amount = tokenOwed[provider][currency];
 if (amount > 0) {
 tokenOwed[provider][currency] = 0;
+ reservesOf[currency] -= amount;
 currency.transfer(provider, amount);

Team response

Fixed.

Mitigation Review

The fix implements the recommendation.

TRST-M-5 DoS in cleanHeap() blocks take() and cancel()

• Category: Griefing attacks

• Source: BookManager.sol

https://github.com/clober-dex/v2-core/pull/26

Trust Security Clober V2 Protocol

• Status: Fixed

Description

An attacker can make an order with a zero amount.

 function make(MakeParams calldata params, bytes calldata hookData)
 external
 onlyByLocker
 returns (OrderId id, uint256 quoteAmount)
 {
 if (params.provider != address(0) && !isWhitelisted[params.provider]) revert
InvalidProvider(params.provider);
 params.tick.validate();
 BookId bookId = params.key.toId();
 Book.State storage book = _books[bookId];
 book.checkOpened();

 if (!params.key.hooks.beforeMake(params, hookData)) return (OrderId.wrap(0),
0);

 uint40 orderIndex = book.make(params.tick, params.amount, params.provider);

In Book.make(), this adds an empty tick to heap.

 function make(State storage self, Tick tick, uint64 amount, address provider)
 internal
 returns (uint40 orderIndex)
 {
 uint24 tickIndex = tick.toUint24();
 if (!self.heap.has(tickIndex)) self.heap.push(tickIndex);

Attacker can call make() to push a lot of empty ticks into the heap, cleanHeap() will call

heap.pop() several times in the loop, and when there are enough empty ticks, cleanHeap() will

revert due to exceeding the block gas limit.

 function cleanHeap(State storage self) internal {
 while (!self.heap.isEmpty()) {
 if (depth(self, self.heap.root().toTick()) == 0) self.heap.pop();
 else break;
 }
 }

Since cleanHeap() will be called in cancel() and take(), this will make it impossible for the users

to cancel and take orders. The DoS is only temporary since it can be resolved by creating a

make order with a non-zero amount such that an empty tick becomes a non-empty tick.

Recommended mitigation

It is recommended that only orders with amount > 0 can be created.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 4965f8c..507d823 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -141,6 +141,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 returns (OrderId id, uint256 quoteAmount)
 {
 if (params.provider != address(0) && !isWhitelisted[params.provider]) revert
InvalidProvider(params.provider);

Trust Security Clober V2 Protocol

+ if (params.amount = 0) revert InvalidAmount();
 params.tick.validate();
 BookId bookId = params.key.toId();
 Book.State storage book = _books[bookId];

Team response

Fixed.

Mitigation Review

The missing zero amount check has been added to Book.make(), no empty orders can be

created.

TRST-M-6 In Controller.cancel(), ERC721 permit approvals can be front-run

• Category: Front-running

• Source: Controller.sol

• Status: Fixed

Description

The BookManager.cancel() function checks that msg.sender is authorized for the order NFT.

function cancel(CancelParams calldata params, bytes calldata hookData) external {
 address owner = _requireOwned(OrderId.unwrap(params.id));
 _checkAuthorized(owner, msg.sender, OrderId.unwrap(params.id));

This is a problem if the Controller is approved via ERC721.permit() signatures or if regular

approval and execution of Controller.cancel() is split into two transactions.

In the case of the permit, an attacker can use the signature to front-run the legitimate

transaction, call ERC721.permit() with the signature to authorize the Controller to handle the

NFT and then call Controller.cancel() to cancel a different amount from what is intended.

Since signatures can be passed to Controller.cancel() and Controller.claim() without being used,

this increases the risk of signature abuse.

Recommended mitigation

The solution is to check in Controller.cancel() that the msg.sender is authorized for the order

NFT, essentially:

• msg.sender is the owner or

• msg.sender has operator approval from owner or

• msg.sender has approval from owner for the specific NFT

In order to achieve this, the BookManager should publicly expose the checkAuthorized()

function and it should be called in Controller.cancel().

The parameters of Controller.cancel() and Controller.claim() should be modified to remove the

signature.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol

https://github.com/clober-dex/v2-core/commit/3047d0104be5fd9d8ba5ee7dbb871c8d77d0e055

Trust Security Clober V2 Protocol

index 4965f8c..47e2195 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -62,6 +62,10 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 revert LockedBy(locker, address(hook));
 }

+ function checkAuthorized(address owner, address spender, uint256 tokenId)
external view {
+ _checkAuthorized(owner, spender, tokenId);
+ }
+
 function getBookKey(BookId id) external view returns (BookKey memory) {
 return _books[id].key;
 }
diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index ece42c4..af3dc00 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -167,23 +167,22 @@ contract Controller is IController, ILocker {
 _bookManager.lock(address(this), lockData);
 }

- function claim(ClaimOrderParams[] calldata orderParamsList, uint64 deadline)
external checkDeadline(deadline) {
- uint256 length = orderParamsList.length;
+ function claim(OrderId[] ids, bytes[] hookData, uint64 deadline) external
checkDeadline(deadline) {
+ uint256 length = ids.length;
 for (uint256 i = 0; i < length; ++i) {
- ClaimOrderParams memory params = orderParamsList[i];
- _bookManager.claim(params.id, params.hookData);
+ _bookManager.claim(ids[i], hookData[i]);
 }
 }

- function cancel(CancelOrderParams[] calldata orderParamsList, uint64 deadline)
external checkDeadline(deadline) {
- uint256 length = orderParamsList.length;
+ function cancel(OrderId[] ids, uint256[] leftQuoteAmounts, bytes[] hookData,
uint64 deadline) external checkDeadline(deadline) {
+ uint256 length = ids.length;
 for (uint256 i = 0; i < length; ++i) {
- CancelOrderParams memory params = orderParamsList[i];
- (BookId bookId,,) = params.id.decode();
+ _bookManager.checkAuthorized(_bookManager.ownerOf(ids[i]), msg.sender,
ids[i]);
+ (BookId bookId,,) = ids[i].decode();
 IBookManager.BookKey memory key = _bookManager.getBookKey(bookId);
 try _bookManager.cancel(
- IBookManager.CancelParams({id: params.id, to: (params.leftQuoteAmount
/ key.unit).toUint64()}),
- params.hookData
+ IBookManager.CancelParams({id: ids[i], to: (leftQuoteAmounts[i] /
key.unit).toUint64()}),
+ hookData[i]
) {} catch {}
 }
 }

Team response

Fixed.

Mitigation Review

https://github.com/clober-dex/v2-core/pull/46

Trust Security Clober V2 Protocol

The authorization check in Controller.execute() is applied to the ERC721s in the

ERC20PermitParams[] array, but the actual NFTs that actions are performed on are encoded

in the paramsDataList. Therefore, the authorization check needs to be moved into

Controller._cancel() and Controller._claim().

The attacker can steal the signature and provide an empty erc721PermitParamsList in

execute(), then claim or cancel the order and steal the received tokens.

Note that only Controller.execute() is vulnerable. Controller.cancel() and Controller.claim() are

safe.

Team response

Fixed.

Final Mitigation Review

The fix moves the ERC721 authorization check to lockAcquired() to solve the issue.

TRST-M-7 Controller slippage check does not consider fees

• Category: Logical flaws

• Source: Controller.sol

• Status: Fixed

Description

The slippage checks in Controller._take() and Controller._spend() perform the slippage checks

based on the quoteAmount and baseAmount that are returned by the BookManager.take()

function.

These values do not include fees and so the effective order prices may be worse than what is

indicated by the quoteAmount and baseAmount.

Recommended mitigation

There are two options to fix this problem:

1. Calculate the fee in the Controller

2. Return the amounts with the fees included in BookManager.make() and

BookManager.take()

The second option seems more efficient even though it requires the change to be a layer

deeper in the BookManager and there may be valid reasons for the amounts to not include

fees.

The fix with Option 2 is suggested below. Note that the direction of the fee accounting is also

fixed in this code snippet.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 4965f8c..ad21b66 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -138,7 +138,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 function make(MakeParams calldata params, bytes calldata hookData)
 external

https://github.com/clober-dex/v2-core/pull/56

Trust Security Clober V2 Protocol

 onlyByLocker
- returns (OrderId id, uint256 quoteAmount)
+ returns (OrderId id, uint256 absQuoteAmount)
 {
 if (params.provider != address(0) && !isWhitelisted[params.provider]) revert
InvalidProvider(params.provider);
 params.tick.validate();
@@ -152,13 +152,14 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit
{
 id = OrderIdLibrary.encode(bookId, params.tick, orderIndex);
 unchecked {
 // @dev uint64 * uint64 < type(uint256).max
- quoteAmount = uint256(params.amount) * params.key.unit;
+ uint256 quoteAmount = uint256(params.amount) * params.key.unit;
 }
 int256 quoteDelta = quoteAmount.toInt256();

 if (!params.key.makerPolicy.useOutput()) {
- quoteDelta -= _calculateFee(quoteAmount, params.key.makerPolicy.rate());
+ quoteDelta += _calculateFee(quoteAmount, params.key.makerPolicy.rate());
 }
+ absQuoteAmount = uint256(quoteDelta);

 _accountDelta(params.key.quote, quoteDelta);

@@ -172,7 +173,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 function take(TakeParams calldata params, bytes calldata hookData)
 external
 onlyByLocker
- returns (uint256 quoteAmount, uint256 baseAmount)
+ returns (uint256 absQuoteDelta, uint256 absBaseDelta)
 {
 BookId bookId = params.key.toId();
 Book.State storage book = _books[bookId];
@@ -182,9 +183,9 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {

 (Tick tick, uint64 takenAmount) = book.take(params.maxAmount);
 unchecked {
- quoteAmount = uint256(takenAmount) * params.key.unit;
+ uint256 quoteAmount = uint256(takenAmount) * params.key.unit;
 }
- baseAmount = tick.quoteToBase(quoteAmount, true);
+ uint256 baseAmount = tick.quoteToBase(quoteAmount, true);

 {
 int256 quoteDelta = quoteAmount.toInt256();
@@ -192,7 +193,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 if (params.key.takerPolicy.useOutput()) {
 quoteDelta -= _calculateFee(quoteAmount,
params.key.takerPolicy.rate());
 } else {
- baseDelta -= _calculateFee(baseAmount,
params.key.takerPolicy.rate());
+ baseDelta += _calculateFee(baseAmount,
params.key.takerPolicy.rate());
 }
 _accountDelta(params.key.quote, -quoteDelta);
 _accountDelta(params.key.base, baseDelta);
@@ -200,6 +201,8 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {

 params.key.hooks.afterTake(params, tick, takenAmount, hookData);

+ absQuoteDelta = uint256(quoteDelta);
+ absBaseDelta = uint256(baseDelta);
 emit Take(bookId, msg.sender, tick, takenAmount);
 }

Trust Security Clober V2 Protocol

Team response

Fixed.

Mitigation Review

The fix implements the recommendation. The BookManager functions now return the

amounts with the fees included. However, the maxAmount parameter that is passed to

_bookManager.take() is incorrect, it should consider fees. Similarly, in Controller_make(), the

amount parameter that is passed to _bookManager.make() should also consider fees.

Controller._make():

diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index bc1b878..2d3163e 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -258,11 +258,14 @@ contract Controller is IController, ILocker, ReentrancyGuard {
 function _make(MakeOrderParams memory params) internal returns (OrderId id) {
 IBookManager.BookKey memory key = _bookManager.getBookKey(params.id);
 uint256 quoteAmount;
+ uint64 _amount = (params.quoteAmount / key.unit).toUint64();
 (id, quoteAmount) = _bookManager.make(
 IBookManager.MakeParams({
 key: key,
 tick: params.tick,
- amount: (params.quoteAmount / key.unit).toUint64(),
+ amount: key.makerPolicy.usesQuote()
+ ? (uint256(_amount) * 10**6).divide(uint256(int256(10 ** 6) +
key.makerPolicy.rate()), false).toUint64()
+ : _amount,
 provider: address(0)
 }),
 params.hookData

Controller._take():

@@ -282,11 +285,14 @@ contract Controller is IController, ILocker, ReentrancyGuard {
 unchecked {
 leftQuoteAmount -= quoteAmount;
 }
+ uint64 _maxAmount = leftQuoteAmount.divide(key.unit, true).toUint64();
 (quoteAmount,) = _bookManager.take(
 IBookManager.TakeParams({
 key: key,
 tick: tick,
- maxAmount: leftQuoteAmount.divide(key.unit, true).toUint64()
+ maxAmount: key.takerPolicy.usesQuote()
+ ? (uint256(_maxAmount) * 10**6).divide(uint256(int256(10 ** 6) -
key.takerPolicy.rate()), true).toUint64()
+ : _maxAmount
 }),
 params.hookData
);

Controller._spend():

@@ -299,22 +305,26 @@ contract Controller is IController, ILocker, ReentrancyGuard {

 uint256 leftBaseAmount = params.baseAmount;

- while (leftBaseAmount > 0 && !_bookManager.isEmpty(params.id)) {

https://github.com/clober-dex/v2-core/pull/22

Trust Security Clober V2 Protocol

+ uint256 baseAmount;
+ while (leftBaseAmount > baseAmount && !_bookManager.isEmpty(params.id)) {
 Tick tick = _bookManager.getLowest(params.id);
 if (params.limitPrice < tick.toPrice()) break;
- (, uint256 baseAmount) = _bookManager.take(
+ unchecked {
+ leftBaseAmount -= baseAmount;
+ }
+ uint64 _maxAmount = (tick.baseToQuote(leftBaseAmount, true) /
key.unit).toUint64();
+ (,baseAmount) = _bookManager.take(
 IBookManager.TakeParams({
 key: key,
 tick: tick,
- maxAmount: (tick.baseToQuote(leftBaseAmount, false) /
key.unit).toUint64()
+ maxAmount: !key.takerPolicy.usesQuote()
+ ? (uint256(_maxAmount) * 10**6).divide(uint256(int256(10 ** 6) +
key.takerPolicy.rate()), true).toUint64()
+ : _maxAmount
 }),
 params.hookData
);
 if (baseAmount == 0) break;

- unchecked {
- leftBaseAmount -= baseAmount;
- }
 }
 }

The formulas have been mathematically derived and it has been ensured that the code

compiles. Still, the client is encouraged to provide greater test coverage for non-zero maker

and taker fees in the Controller. No such tests exist as of now.

Team response

Fixed.

Final Mitigation Review

The fix implements the recommended logic. The rounding directions in the

Controller._make(), Controller._take() and Controller._spend() functions are not in line with

the recommendation but they are not of importance from a security perspective.

TRST-M-8 Book.cancel() needs to remove empty ticks

• Category: Griefing attacks

• Source: Book.sol

• Status: Fixed

Description

When Book.cancel() is called to cancel an order, it just pops empty ticks from the root of the

heap. If the user creates a non-empty order at a tick that is not at the root of the heap and

then fully cancels it with to=0, Book.cancel() will not remove that tick from the heap, resulting

in empty ticks being left in the heap.

https://github.com/clober-dex/v2-core/pull/58

Trust Security Clober V2 Protocol

A malicious user could exploit this to create many empty ticks and thereby DoS

Book.cleanHeap(). This leads to a DoS in the upstream Book.take() and Book.cancel()

functions.

The impact is the same as in TRST-M-5 but the root cause is different.

Recommended mitigation

It is recommended to implement Heap.remove() as follows to allow removing ticks from any

position in the heap.

diff --git a/contracts/libraries/Book.sol b/contracts/libraries/Book.sol
index 5a14bc6..91bf2cb 100644
--- a/contracts/libraries/Book.sol
+++ b/contracts/libraries/Book.sol
@@ -150,7 +150,14 @@ library Book {
 }
 queue.orders[orderIndex].pending = afterPending;

- self.cleanHeap();
+ if (depth(self, tick) == 0) {
+ // remove() won't revert so we can cancel with to=0 even if the depth()
is already zero
+ // works even if heap is empty
+ self.heap.remove(tick.toUint24());
+ }
+ // we don't need to call cleanHeap() as calls to take() will take care of
removing empty ticks from the root
 }

 function cleanHeap(State storage self) internal {
diff --git a/contracts/libraries/Heap.sol b/contracts/libraries/Heap.sol
index 89bc29d..71e422f 100644
--- a/contracts/libraries/Heap.sol
+++ b/contracts/libraries/Heap.sol
@@ -82,6 +82,25 @@ library Heap {
 }
 }

+ function remove(mapping(uint256 => uint256) storage heap, uint24 value) internal
{
+ (uint256 b0b1, uint256 b2) = _split(value);
+ uint256 mask = 1 << b2;
+ uint256 b2Bitmap = heap[b0b1];
+
+ heap[b0b1] = b2Bitmap & (~mask);
+ if (b2Bitmap == mask) {
+ mask = 1 << (b0b1 & 0xff);
+ uint256 b1BitmapKey = ~(b0b1 >> 8);
+ uint256 b1Bitmap = heap[b1BitmapKey];
+
+ heap[b1BitmapKey] = b1Bitmap & (~mask);
+ if (mask == b1Bitmap) {
+ mask = 1 << (~b1BitmapKey);
+ heap[B0_BITMAP_KEY] = heap[B0_BITMAP_KEY] & (~mask);
+ }
+ }
+ }
+
 function minGreaterThan(mapping(uint256 => uint256) storage heap, uint24 value)
internal view returns (uint24) {
 (uint256 b0b1, uint256 b2) = _split(value);
 uint256 b2Bitmap = (MAX_UINT_256_MINUS_1 << b2) & heap[b0b1];

Team response

Trust Security Clober V2 Protocol

Fixed.

Mitigation Review

The new function is called clear() instead of remove(). So the comment should be corrected.

Apart from this comment, the issue has been fixed as recommended. Book.cancel() now

removes ticks with empty liquidity.

Since Book.take() can now take liquidity from any tick, TickBitmap.clear() is used in Book.take()

instead of pop(). In fact the pop() function is no longer needed and has been removed.

Team response

Fixed.

Final Mitigation Review

The fix corrects the comment.

TRST-M-9 Controller reentrancy due to ETH callback

• Category: Reentrancy attacks

• Source: Controller.sol

• Status: Fixed

Description

The protocol has different places where reentrancies can originate from. All of these are the

result of ETH transfers.

Here are the sources for such reentrancies where the address that gets the callback is not

necessarily the user that has initiated the whole transaction, which can lead to an exploit:

• BookManager.cancel()

• BookManager.claim()

• BookManager.collect()

• BookManager.withdraw()

• BountyPlatform.afterClaim()

• BountyPlatform.afterCancel()

A concrete way has not yet been discovered for the user getting the callback to himself

managing to exploit the protocol. However this could still result in a viable attack in the future

when more integrations are added. Adding additional Hooks and Lockers is non-trivial and can

lead to complex vulnerabilities down the line.

Currently, the only possible uncovered attack is when a legitimate user (Bob) gives another

user (Alice) a callback with the transaction going through Controller.lockAcquired(). Any of the

above callbacks can be used in this attack.

The attack looks like this:

https://github.com/clober-dex/v2-core/pull/34
https://github.com/clober-dex/v2-core/blob/8fc51ac7d7f2111f16554f370e74d6f6e5619819/contracts/libraries/Book.sol#L157
https://github.com/clober-dex/v2-core/pull/55
https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/BookManager.sol#L227
https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/BookManager.sol#L290
https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/BookManager.sol#L301
https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/BookManager.sol#L310
https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/hooks/BountyPlatform.sol#L71
https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/hooks/BountyPlatform.sol#L94

Trust Security Clober V2 Protocol

1. Alice tells Bob to claim her order via the Controller.execute() function, Bob might

make this part of a larger sequence of actions (e.g. one of them might be to make an

order for himself)

2. Bob rightfully thinks this is a safe action (in the base protocol you can just claim for

any other user)

3. Alice gets a callback since the claimed ETH is sent to her.

4. Alice reenters the Controller.execute() function, acquires another lock and takes on

positive delta.

5. Alice does not need to resolve the delta since the number of lockers is greater than

one.

6. Bob will automatically resolve the delta (since delta is accounted per locker and

currency) if he has given sufficient approval and calls _settleTokens() as part of his

other actions.

Recommended mitigation

Due to the flexibility that is built into the base layer BookManager, it can’t be fixed there.

It may have to be fixed in Controller by applying a reentrancy guard to

Controller.lockAcquired(). This ensures that one user will not resolve the delta that has been

taken on by another user.

diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index ece42c4..f0464d5 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -4,6 +4,7 @@ pragma solidity ^0.8.0;
 import {IERC20Permit} from
"@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
 import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
 import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
+import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
 import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";

 import "./interfaces/IController.sol";
@@ -11,7 +12,7 @@ import "./interfaces/ILocker.sol";
 import "./interfaces/IBookManager.sol";
 import "./libraries/OrderId.sol";

-contract Controller is IController, ILocker {
+contract Controller is IController, ILocker, ReentrancyGuard {
 using TickLibrary for *;
 using OrderIdLibrary for OrderId;
 using SafeERC20 for IERC20;
@@ -69,7 +70,7 @@ contract Controller is IController, ILocker {
 return tick.toPrice();
 }

- function lockAcquired(address, bytes memory data) external returns (bytes memory
returnData) {
+ function lockAcquired(address, bytes memory data) external nonReentrant returns
(bytes memory returnData) {
 if (msg.sender != address(_bookManager)) revert InvalidAccess();
 (
 address user,

Team response

Fixed.

https://github.com/clober-dex/v2-core/pull/38

Trust Security Clober V2 Protocol

Mitigation Review

The fix implements the recommendation.

Trust Security Clober V2 Protocol

Low severity findings

TRST-L-1 Controller._take() needs to check if the heap is empty

• Category: Logical flaws

• Source: Controller.sol

• Status: Fixed

Description

Controller._spend() will not continue to call BookManager.take() when the heap is empty. This

is because when the heap is empty, BookManager.take() will revert when calling heap.root().

 function _spend(SpendOrderParams memory params) internal {
 IBookManager.BookKey memory key = _bookManager.getBookKey(params.id);

 uint256 takenQuoteAmount;
 uint256 leftBaseAmount = params.baseAmount;

 while (leftBaseAmount > 0 && !_bookManager.isEmpty(params.id)) {

Similarly, Controller._take() should also check whether the heap is empty, which it currently

doesn’t.

 function _take(TakeOrderParams memory params) internal {
 IBookManager.BookKey memory key = _bookManager.getBookKey(params.id);

 uint256 leftQuoteAmount = params.quoteAmount;
 uint256 spendBaseAmount;

 uint256 quoteAmount;
 uint256 baseAmount;
 while (leftQuoteAmount > quoteAmount) {

Consider that the quote amount in the book is 1000.

1. Alice and Bob initiate transactions to take 600 quote at the same time.

2. Alice's transaction succeeds, but Bob's transaction fails because the heap is empty.

A better approach would be to have Bob take 400 quote.

Recommended mitigation

It is recommended to check if the heap is empty in Controller._take().

diff --git a/contracts/Controller.sol b/contracts/Controller.sol
index ece42c4..0e53a52 100644
--- a/contracts/Controller.sol
+++ b/contracts/Controller.sol
@@ -212,7 +212,7 @@ contract Controller is IController, ILocker {

 uint256 quoteAmount;
 uint256 baseAmount;
- while (leftQuoteAmount > quoteAmount) {
+ while (leftQuoteAmount > quoteAmount && !_bookManager.isEmpty(params.id)) {
 unchecked {
 leftQuoteAmount -= quoteAmount;
 spendBaseAmount += baseAmount;

Trust Security Clober V2 Protocol

Team response

Fixed.

Mitigation Review

The fix implements the recommendation.

TRST-L-2 Book.calculateClaimableRawAmount() may overflow

• Category: Overflow issues

• Source: Book.sol

• Status: Fixed

Description

Book.calculateClaimableRawAmount() overflows when orderAmount is greater or equal to

2^63 and the whole order is claimable.

In this case orderAmount + totalClaimable > type(uint64).max = 2^64 – 1.

 function calculateClaimableRawAmount(State storage self, Tick tick, uint40 index)
internal view returns (uint64) {
 uint64 orderAmount = self.getOrder(tick, index).pending;

 Queue storage queue = self.queues[tick];
 // @dev Book logic always considers replaced orders as claimable.
 unchecked {
 if (uint256(index) + MAX_ORDER < queue.orders.length) return orderAmount;
 }
 uint64 totalClaimable = self.totalClaimableOf.get(tick);
 uint64 rangeRight = _getClaimRangeRight(queue, index);
 if (rangeRight >= totalClaimable + orderAmount) return 0; // @auidt: may
overflow here

 // -------- totalClaimable ---------|---
 // ------|---- orderAmount ----|--------
 // rangeLeft rangeRight
 if (rangeRight <= totalClaimable) return orderAmount;
 // -- totalClaimable --|----------------
 // ------|---- orderAmount ----|--------
 // rangeLeft rangeRight
 else return totalClaimable + orderAmount - rangeRight; // @auidt: may
overflow here
 }

The scenario is extremely unlikely since, if the Book is configured correctly, one tick needs to

have at least the value of half the total supply of the quote token.

Still, it should be fixed since the funds could not be recovered.

Recommended mitigation

It is recommended to rearrange the calculations to prevent the overflow.

Note that rangeRight – orderAmount can never underflow.

diff --git a/contracts/libraries/Book.sol b/contracts/libraries/Book.sol

https://github.com/clober-dex/v2-core/pull/39

Trust Security Clober V2 Protocol

index 5a14bc6..a7b7923 100644
--- a/contracts/libraries/Book.sol
+++ b/contracts/libraries/Book.sol
@@ -179,7 +179,7 @@ library Book {
 }
 uint64 totalClaimable = self.totalClaimableOf.get(tick);
 uint64 rangeRight = _getClaimRangeRight(queue, index);
- if (rangeRight >= totalClaimable + orderAmount) return 0;
+ if (rangeRight - orderAmount >= totalClaimable) return 0;

 // -------- totalClaimable ---------|---
 // ------|---- orderAmount ----|--------
@@ -188,7 +188,7 @@ library Book {
 // -- totalClaimable --|----------------
 // ------|---- orderAmount ----|--------
 // rangeLeft rangeRight
- else return totalClaimable + orderAmount - rangeRight;
+ else return totalClaimable - (rangeRight - orderAmount);
 }

Team response

Fixed.

Mitigation Review

The fix implements the recommendation.

In addition, the logic in Book.calculateClaimableRawAmount() is now wrapped in an

unchecked block. This is safe and there is no risk of overflows or underflows.

https://github.com/clober-dex/v2-core/pull/36

Trust Security Clober V2 Protocol

Additional recommendations

Use latest solmate implementation for ERC20 transfer

The implementation of the ERC20 transfer in Currency.transfer() should match the solmate

implementation.

There is currently no risk, but the current implementation temporarily overwrites the free

memory pointer which should be avoided.

Also, a small fix has been applied to the solmate library to mask the to address.

diff --git a/contracts/libraries/Currency.sol b/contracts/libraries/Currency.sol
index c8fb4f2..8e81103 100644
--- a/contracts/libraries/Currency.sol
+++ b/contracts/libraries/Currency.sol
@@ -32,27 +32,24 @@ library CurrencyLibrary {
 if (!success) revert NativeTransferFailed();
 } else {
 assembly {
- // We'll write our calldata to this slot below, but restore it later.
- let memPointer := mload(0x40)
+ // Get a pointer to some free memory.
+ let freeMemoryPointer := mload(0x40)

 // Write the abi-encoded calldata into memory, beginning with the
function selector.
- mstore(0,
0xa9059cbb00)
- mstore(4, to) // Append the "to" argument.
- mstore(36, amount) // Append the "amount" argument.
-
- success :=
- and(
- // Set success to whether the call reverted, if not we check
it either
- // returned exactly 1 (can't just be non-zero data), or had
no return data.
- or(and(eq(mload(0), 1), gt(returndatasize(), 31)),
iszero(returndatasize())),
- // We use 68 because that's the total length of our calldata
(4 + 32 * 2)
- // Counterintuitively, this call() must be positioned after
the or() in the
- // surrounding and() because and() evaluates its arguments
from right to left.
- call(gas(), currency, 0, 0, 68, 0, 32)
-)
-
- mstore(0x60, 0) // Restore the zero slot to zero.
- mstore(0x40, memPointer) // Restore the memPointer.
+ mstore(freeMemoryPointer,
0xa9059cbb00)
+ mstore(add(freeMemoryPointer, 4), and(to,
0xff)) // Append and mask the "to" argument.
+ mstore(add(freeMemoryPointer, 36), amount) // Append the "amount"
argument. Masking not required as it's a full 32 byte type.
+
+ success := and(
+ // Set success to whether the call reverted, if not we check it
either
+ // returned exactly 1 (can't just be non-zero data), or had no
return data.

https://github.com/transmissions11/solmate/pull/347

Trust Security Clober V2 Protocol

+ or(and(eq(mload(0), 1), gt(returndatasize(), 31)),
iszero(returndatasize())),
+ // We use 68 because the length of our calldata totals up like
so: 4 + 32 * 2.
+ // We use 0 and 32 to copy up to 32 bytes of return data into the
scratch space.
+ // Counterintuitively, this call must be positioned second to the
or() call in the
+ // surrounding and() call or else returndatasize() will be zero
during the computation.
+ call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
+)
 }

 if (!success) revert ERC20TransferFailed();

Controller._provider may be out of sync with BookManager.defaultProvider

Controller._provider is set to BookManager.defaultProvider() in the constructor of

Controller and is immutable.

If the owner changes the defaultProvider in BookManager.setDefaultProvider(), this will

make the Controller._provider out of sync with BookManager.defaultProvider.

The _provider is currently not used in the Controller so it is recommended to remove this

variable.

- address private immutable _provider;

 constructor(address bookManager) {
 _bookManager = IBookManager(bookManager);
- _provider = _bookManager.defaultProvider();
 }

TickLibrary.toPrice() should call validate()

TickLibrary.fromPrice() will call validatePrice() to check whether price is within the valid

range, while TickLibrary.toPrice() does not call validate() to check whether tick is within the

valid range.

 function fromPrice(uint256 price) internal pure validatePrice(price) returns
(Tick) {
...
 function toPrice(Tick tick) internal pure returns (uint256 price) {

Both functions are called in the Controller's view function, so the appropriate checks should

be applied to both.

 function fromPrice(uint256 price) external pure returns (Tick) {
 return price.fromPrice();
 }

 function toPrice(Tick tick) external pure returns (uint256) {
 return tick.toPrice();
 }

Trust Security Clober V2 Protocol

The recommended fix is to validate the tick:

diff --git a/contracts/libraries/Tick.sol b/contracts/libraries/Tick.sol
index 9182965..07e47fe 100644
--- a/contracts/libraries/Tick.sol
+++ b/contracts/libraries/Tick.sol
@@ -76,6 +76,7 @@ library TickLibrary {
 }

 function toPrice(Tick tick) internal pure returns (uint256 price) {
+ validate(tick);
 int24 tickValue = Tick.unwrap(tick);
 uint256 absTick = uint24(tickValue < 0 ? -tickValue : tickValue);

Controller should handle ETH and ERC20 balances uniformly

On the one hand, in _settleTokens(), the Controller does not keep any tokens, it transfers

tokens (except ETH) directly from users or to users.

On the other hand, in _claim() and _cancel(), it allows users to transfer NFTs to the

Controller and then claim tokens to the Controller while these tokens cannot be used in

further operations.

This makes the Controller's architecture inconsistent. If users should be allowed to use

tokens that are temporarily owned by the Controller, then the token accounting needs to be

adjusted. If the Controller should not keep any tokens, then the NFT transfers should be

removed as approvals to the Controller are sufficient and less prone to errors.

Improve FeePolicy encoding

The FeePolicy is a uint24 with some of its bits unused (bit 24,23,21)

As a result, it may be checked that all the individual properties of the BookKey struct are

equal but the book ids may still be different.

In other words, the FeePolicy encodes the useOutput and rate values and there are

different FeePolicy values that when decoded have the same useOutput and rate values.

A simple modification of the FeePolicy library can get rid of this quirk.

diff --git a/contracts/libraries/FeePolicy.sol b/contracts/libraries/FeePolicy.sol
index 86eaf8e..0b6a9c4 100644
--- a/contracts/libraries/FeePolicy.sol
+++ b/contracts/libraries/FeePolicy.sol
@@ -11,7 +11,7 @@ library FeePolicyLibrary {
 int256 internal constant MAX_FEE_RATE = 500000;
 int256 internal constant MIN_FEE_RATE = -500000;

- uint256 internal constant RATE_MASK = 0x0fffff; // 20 bits
+ uint256 internal constant RATE_MASK = 0x7fffff; // 23 bits

 error InvalidFeePolicy();

@@ -21,7 +21,7 @@ library FeePolicyLibrary {
 }

Trust Security Clober V2 Protocol

 assembly {
- feePolicy := or(shl(21, useOutput_), add(rate_, MAX_FEE_RATE))
+ feePolicy := or(shl(23, useOutput_), add(rate_, MAX_FEE_RATE))
 }
 }

@@ -33,7 +33,7 @@ library FeePolicyLibrary {

 function useOutput(FeePolicy self) internal pure returns (bool f) {
 assembly {
- f := shr(21, self)
+ f := shr(23, self)
 }
 }

BookManager: remove unused load() functions

The two load() functions in BookManger are never used, removing them reduces the code

size by 0.236KB.

BookManager.cancel(): perform burn before transfer

In BookManager.claim(), burn() is called before transfer().

In BookManager.cancel(), transfer() is called before burn().

Therefore it’s possible to receive a callback in an inconsistent state in cancel() since there

should not exist an NFT with pending = 0.

In addition, this allows to call the hooks in this order which ideally should not be possible:

• hooks.beforeCancel()

• hooks.beforeClaim()

• hooks.afterClaim()

• hooksafterCancel()

There is currently no exploitable scenario but we recommend to always perform burn()

before transfer() to reduce attack surface.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 4965f8c..ef133ec 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -223,11 +223,11 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit
{

 if (!makerPolicy.useOutput()) canceledAmount =
_calculateAmountInReverse(canceledAmount, makerPolicy.rate());

+ if (pending == 0) _burn(OrderId.unwrap(params.id));
+
 reservesOf[key.quote] -= canceledAmount;
 key.quote.transfer(owner, canceledAmount);

- if (pending == 0) _burn(OrderId.unwrap(params.id));
-

https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/BookManager.sol#L287-L290
https://github.com/clober-dex/v2-core/blob/3cc1fca8765ebeca54a6ef2add271e0db76726b4/contracts/BookManager.sol#L227-L229

Trust Security Clober V2 Protocol

 key.hooks.afterCancel(params, canceled, hookData);

 emit Cancel(params.id, canceled);

BookManager should use conservative fee rounding

The rounding in the BookManager should always be in the direction such that the protocol

rounds up the funds it takes in and rounds down the funds it gives out.

The problem is that in the BookManager.claim() function the provider fees are currently

rounded up instead of down.

Also, due to rounding, quoteFee and baseFee might become negative so a check should be

added such that only positive fees are added to tokenOwed such as not to risk a revert due

to underflow. Note that effectively increasing tokenOwed in this way is safe since any

negative quoteFee or baseFee values are just due to rounding and the protocol doesn't send

out more funds than it owns.

To address the rounding, a reverse flag has been added in the BookManager._calculateFee()

function.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 4965f8c..fe95f93 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -157,7 +157,7 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 int256 quoteDelta = quoteAmount.toInt256();

 if (!params.key.makerPolicy.useOutput()) {
- quoteDelta -= _calculateFee(quoteAmount, params.key.makerPolicy.rate());
+ quoteDelta -= _calculateFee(quoteAmount, params.key.makerPolicy.rate(),
false);
 }

 _accountDelta(params.key.quote, quoteDelta);
@@ -190,9 +190,9 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 int256 quoteDelta = quoteAmount.toInt256();
 int256 baseDelta = baseAmount.toInt256();
 if (params.key.takerPolicy.useOutput()) {
- quoteDelta -= _calculateFee(quoteAmount,
params.key.takerPolicy.rate());
+ quoteDelta -= _calculateFee(quoteAmount,
params.key.takerPolicy.rate(), false);
 } else {
- baseDelta -= _calculateFee(baseAmount,
params.key.takerPolicy.rate());
+ baseDelta -= _calculateFee(baseAmount, params.key.takerPolicy.rate(),
false);
 }
 _accountDelta(params.key.quote, -quoteDelta);
 _accountDelta(params.key.base, baseDelta);
@@ -264,25 +264,25 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit
{
 FeePolicy makerPolicy = key.makerPolicy;
 FeePolicy takerPolicy = key.takerPolicy;
 if (takerPolicy.useOutput()) {
- quoteFee = _calculateFee(claimedInQuote, takerPolicy.rate());
+ quoteFee = _calculateFee(claimedInQuote, takerPolicy.rate(), true);
 } else {

Trust Security Clober V2 Protocol

- baseFee = _calculateFee(claimableAmount, takerPolicy.rate());
+ baseFee = _calculateFee(claimableAmount, takerPolicy.rate(), true);
 }
 if (makerPolicy.useOutput()) {
- int256 makerFee = _calculateFee(claimableAmount, makerPolicy.rate());
+ int256 makerFee = _calculateFee(claimableAmount, makerPolicy.rate(),
false);
 claimableAmount =
 makerFee > 0 ? claimableAmount - uint256(makerFee) :
claimableAmount + uint256(-makerFee);
 baseFee += makerFee;
 } else {
- quoteFee += _calculateFee(claimedInQuote, makerPolicy.rate());
+ quoteFee += _calculateFee(claimedInQuote, makerPolicy.rate(), true);
 }
 }

 Book.Order memory order = book.getOrder(tick, orderIndex);
 address provider = order.provider;
 if (provider == address(0)) provider = defaultProvider;
- tokenOwed[provider][key.quote] += quoteFee.toUint256();
- tokenOwed[provider][key.base] += baseFee.toUint256();
+ if (quoteFee > 0) tokenOwed[provider][key.quote] += quoteFee.toUint256();
+ if (baseFee > 0) tokenOwed[provider][key.base] += baseFee.toUint256();

 if (order.pending == 0) _burn(OrderId.unwrap(id));

@@ -354,14 +354,14 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit
{
 currencyDelta[locker][currency] = next;
 }

- function _calculateFee(uint256 amount, int24 rate) internal pure returns (int256)
{
+ function _calculateFee(uint256 amount, int24 rate, bool reverse) internal pure
returns (int256) {
 bool positive = rate > 0;
 uint256 absRate;
 unchecked {
 absRate = uint256(uint24(positive ? rate : -rate));
 }
 // @dev absFee must be less than type(int256).max
- uint256 absFee = Math.divide(amount * absRate, uint256(_RATE_PRECISION),
positive);
+ uint256 absFee = Math.divide(amount * absRate, uint256(_RATE_PRECISION),
reverse ? !positive: positive);
 return positive ? int256(absFee) : -int256(absFee);
 }

Note that in one of the instances in the BookManager.claim() function we do not reverse

the rounding.

Without reversing, the following behavior occurs:

For a positive fee rate, makerFee is rounded up -> claimableAmount is rounded down.

For a negative fee rate, makerFee is rounded up (toward 0) -> claimableAmount is rounded

down.

In theory, 1 𝑤𝑒𝑖 less makerFee results in 1 𝑤𝑒𝑖 more claimableAmount and vice versa, so

the rounding in this instance should not matter.

Trust Security Clober V2 Protocol

Since the owner might effectively increase the makerFee from negative to 0 later (we can't

decrement tokenOwed), the more conservative rounding should be on the

claimableAmount rather than the makerFee.

Consider if claimableAmount is rounded up and makerFee is rounded down. The rounding

down in makerFee may not be realized since tokenOwed is never decremented.

Mitigation Review

It is still recommended to check quoteFee > 0 and baseFee > 0 before incrementing

tokenOwed based on the reasoning provided in the initial report.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 00d6f8c..ef18ed5 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -285,8 +285,8 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 Book.Order memory order = book.getOrder(tick, orderIndex);
 address provider = order.provider;
 if (provider == address(0)) provider = defaultProvider;
- tokenOwed[provider][key.quote] += quoteFee.toUint256();
- tokenOwed[provider][key.base] += baseFee.toUint256();
+ if (quoteFee > 0) tokenOwed[provider][key.quote] += quoteFee.toUint256();
+ if (baseFee > 0) tokenOwed[provider][key.base] += baseFee.toUint256();

 if (order.pending == 0) _burn(OrderId.unwrap(id));

Also, the quoteAmount assignment in BookManager.make() can be rearranged.

diff --git a/contracts/BookManager.sol b/contracts/BookManager.sol
index 00d6f8c..b2dcfd1 100644
--- a/contracts/BookManager.sol
+++ b/contracts/BookManager.sol
@@ -161,8 +161,8 @@ contract BookManager is IBookManager, Ownable2Step, ERC721Permit {
 quoteDelta = int256(quoteAmount);
 if (params.key.makerPolicy.usesQuote()) {
 quoteDelta += params.key.makerPolicy.calculateFee(quoteAmount,
false);
+ quoteAmount = uint256(quoteDelta);
 }
- quoteAmount = uint256(quoteDelta);
 }

 _accountDelta(params.key.quote, quoteDelta);

Final Mitigation Review

The fix implements the recommendation.

https://github.com/clober-dex/v2-core/pull/60

Trust Security Clober V2 Protocol

Centralization risks

Hooks are fully trusted

Each Book can be configured to use a Hook that receives a callback when certain actions are

executed. The Hook is privileged to perform actions on behalf of the user interacting with the

BookManager. In particular, the Hook can call functions that are protected with the

onlyByLocker modifier and must not revert as this can lock funds forever. As such, a Hook is

fully trusted in the context of the Book that it is set for.

BookManager owner can set whitelisted providers

In the BookManager, only providers can receive trading fees and they must be whitelisted by

the owner of the BookManager. Moreover, once a provider has been whitelisted, it can be

delisted at any time, being unable to earn fees in the future.

The owner of the BookManager does not have any privileges beyond this and there exist no

other trusted roles in the base layer DEX.

.

Trust Security Clober V2 Protocol

Systemic risks

Books inherit risks of external tokens

Each Book has a quote and a base currency. Currencies can be native ETH or ERC20 tokens.

The Book inherits the risks of its underlying tokens. These risks include, but are not limited to,

centralization risks, risks of vulnerabilities being exploited and depeg risks. In other words, a

Book is only as secure as its underlying tokens.

The tokens also need to be compatible with the protocol. For example, fee-on-transfer tokens

or rebasing tokens are not supported.

Risks in the underlying tokens of one Book, however, do not translate to other Books that use

different tokens since from a security perspective they are isolated from each other.

Books can be griefed with low liquidity ticks

Griefers can call BookManager.make() to create orders at ticks below market price such that

any taker first needs to take these orders before reaching legitimate liquidity. By creating each

of 𝑛 orders on a new tick, the taker needs to call 𝑛 times BookManager.take() and incur 𝑛

times the gas fee for calling the function.

Let’s formalize the issue to get a better understanding for why it is a systemic risk and needs

to be considered on a per Book basis.

For the sake of simplicity, it is assumed that the defined variables are the same for all 𝑛 orders.

In reality we have an average over the sum of the individual orders. So, the variables can be

seen as this average over the sum.

Let 𝑔𝑚 be the cost in USD of calling BookManager.make() once.

Let 𝑝 be the price in USD at which 1 𝑤𝑒𝑖 of quote is offered.

Let 𝑣 be the value of 1 𝑤𝑒𝑖 of quote in USD

Let 𝑢 be the amount of 𝑤𝑒𝑖 per unit of quote.

Let 𝑛 be the number of units that are used to perform the griefing attack. There is one order

per unit.

Let 𝑔𝑡be the cost in USD of calling BookManager.take() once (this is generally less than calling

BookManager.make() based on the gas benchmarks in the test suite).

Creating the grief thus costs:

𝑐𝑜𝑠𝑡𝑔𝑟𝑖𝑒𝑓 = (𝑔𝑚 + (𝑣 − 𝑝) ∗ 𝑢) ∗ 𝑛

And resolving the grief costs:

𝑐𝑜𝑠𝑡𝑢𝑛𝑔𝑟𝑖𝑒𝑓 = (𝑔𝑡 + (𝑝 − 𝑣) ∗ 𝑢) ∗ 𝑛

Trust Security Clober V2 Protocol

If it is possible to make the cost of ungriefing negative by choosing Book parameters, the

attack can be mitigated without further economic considerations.

We set:

𝑐𝑜𝑠𝑡𝑢𝑛𝑔𝑟𝑖𝑒𝑓 < 0

↔ (𝑔𝑡 + (𝑝 − 𝑣) ∗ 𝑢) ∗ 𝑛 < 0

We know that 𝑛 is greater zero:

↔ 𝑔𝑡 + (𝑝 − 𝑣) ∗ 𝑢 < 0

↔ 𝑔𝑡 < (𝑣 − 𝑝) ∗ 𝑢

We can see that 𝑐𝑜𝑠𝑡𝑢𝑛𝑔𝑟𝑖𝑒𝑓 is negative when 𝑔𝑡 is less than the difference between the

market value 𝑣 for 1 𝑤𝑒𝑖 of quote and the offered price 𝑝 for 1 𝑤𝑒𝑖 of quote times the unit

size 𝑢.

This assumes that the difference 𝑣 – 𝑝 can be realized. E.g., the ungriefer already holds quote

and so the marginal cost of trading is zero.

It's not possible to prevent this attack be setting Book parameters as the griefer can set 𝑝

close to 𝑣 such that for any reasonable value of 𝑢, (𝑣 − 𝑝) ∗ 𝑢 is smaller than 𝑔𝑡.

If the cost of resolving the grief is positive, we can observe the following behavior from

rational market participants:

1. Rational takers will only resolve the grief if they can't get a better deal from other

exchanges, requiring makers to offer at sub-market prices.

2. Rational makers won't offer at sub-market prices.

3. Market forces will dry up the Book and it will be unused.

Essentially this acts as a spread that can be freely determined by the griefer and the lower the

liquidity the easier the Book is to grief.

Let us now characterize the problem from the griefer's perspective.

The griefer wants to lose as little funds as possible while maximizing the cost for the ungriefer.

Naively, this is achieved by setting 𝑝 one tick below 𝑣. However, this is not possible since it

risks the grief being resolved by natural market fluctuations.

So, the griefer needs to set 𝑝 at a distance from 𝑣 such that market fluctuations don't reach it

and the grief needs to be resolved by takers taking a loss.

Choosing the best griefing strategy thus becomes a difficult optimization problem that

requires assumptions about takers and their willingness to take orders at prices below market

value. It also requires considerations regarding expected market volatility. And finally, it needs

to be determined how much the griefer is even willing to pay since there is no financial reward

for him. Trying to answer these questions is beyond the scope of the smart contract audit.

NFT transfers can be front-run with claim() and cancel()

Trust Security Clober V2 Protocol

When order NFTs are traded on secondary markets or sent from user to user, there is a risk

that claim() or cancel() is called before the transfer to make the NFT worthless.

This is particularly a problem for claim() since anyone can call it even if the NFT is stored in an

escrow and so the escrow needs to be constructed to be able to process the claimed funds.

Receiving a raw transfer of an order NFT is thus unsafe and can result in the complete loss of

funds.

