

Cairo Security Clan

Contents
1 About Cairo Security Clan 2

2 Disclaimer 2

3 Executive Summary 3

4 Summary of Audit 4
4.1 Scoped Files . 4
4.2 Issues . 4

5 Risk Classification 5

6 Issues by Severity Levels 6
6.1 Critical . 6

6.1.1 Attacker could claim any order and steal the claimable base . 6
6.1.2 Attacker could cancel any order and steal the pending quote . 7

6.2 Medium . 8
6.2.1 Flawed check in function is_valid_hook_address() permits hook without any flags set 8
6.2.2 is_base_remained not set when limit_price reached in function _spend() . 9

6.3 Low . 10
6.3.1 Order Id packing can overflow felt252 limit . 10

6.4 Info . 11
6.4.1 Breaking condition in the while loop in function query() might cause a revert due to overflow 11
6.4.2 Unchecked return values of ERC20 transfer . 11
6.4.3 Confusing parameter name in function reserves_of() . 12

6.5 Best Practices . 13
6.5.1 Function lock_data() might return incorrect length due to operator precedence 13

7 Test Evaluation 14
7.1 Compilation Output . 14
7.2 Tests Output . 14

1

Cairo Security Clan

1 About Cairo Security Clan
Cairo Security Clan is a leading force in the realm of blockchain security, dedicated to fortifying the foundations of the digital age.
As pioneers in the field, we specialize in conducting meticulous smart contract security audits, ensuring the integrity and reliability of
decentralized applications built on blockchain technology.

At Cairo Security Clan, we boast a multidisciplinary team of seasoned professionals proficient in blockchain security, cryptography,
and software engineering. With a firm commitment to excellence, our experts delve into every aspect of the Web3 ecosystem, from
foundational layer protocols to application-layer development. Our comprehensive suite of services encompasses smart contract audits,
formal verification, and real-time monitoring, offering unparalleled protection against potential vulnerabilities.

Our team comprises industry veterans and scholars with extensive academic backgrounds and practical experience. Armed with advanced
methodologies and cutting-edge tools, we scrutinize and analyze complex smart contracts with precision and rigor. Our track record
speaks volumes, with a plethora of published research papers and citations, demonstrating our unwavering dedication to advancing the
field of blockchain security.

At Cairo Security Clan, we prioritize collaboration and transparency, fostering meaningful partnerships with our clients. We believe in a
customer-oriented approach, engaging stakeholders at every stage of the auditing process. By maintaining open lines of communication
and soliciting client feedback, we ensure that our solutions are tailored to meet the unique needs and objectives of each project.

Beyond our core services, Cairo Security Clan is committed to driving innovation and shaping the future of blockchain technology. As
active contributors to the ecosystem, we participate in the development of emerging technologies such as Starknet, leveraging our expertise
to build robust infrastructure and tools. Through strategic guidance and support, we empower our partners to navigate the complexities
of the blockchain landscape with confidence and clarity.

In summary, Cairo Security Clan stands at the forefront of blockchain security, blending technical prowess with a client-centric ethos to
deliver unparalleled protection and peace of mind in an ever-evolving digital landscape. Join us in safeguarding the future of decentralized
finance and digital assets with confidence and conviction.

2 Disclaimer
Disclaimer Limitations of this Audit:

This report is based solely on the materials and documentation provided by you to Cairo Security Clan for the specific purpose of conducting
the security review outlined in the Summary of Audit and Scoped Files. The findings presented here may not be exhaustive and may
not identify all potential vulnerabilities. Cairo Security Clan provides this review and report on an "as-is" and "as-available" basis. You
acknowledge that your use of this report, including any associated services, products, protocols, platforms, content, and materials, occurs
entirely at your own risk.

Inherent Risks of Blockchain Technology:

Blockchain technology remains in its developmental stage and is inherently susceptible to unknown risks and vulnerabilities. This review
is specifically focused on the smart contract code and does not extend to the compiler layer, programming language elements beyond the
reviewed code, or other potential security risks outside the code itself.

Report Purpose and Reliance:

This report should not be construed as an endorsement of any specific project or team, nor does it guarantee the absolute security of the
audited smart contracts. No third party should rely on this report for any purpose, including making investment or purchasing decisions.

Liability Disclaimer:

To the fullest extent permitted by law, Cairo Security Clan disclaims all liability associated with this report, its contents, and any related
services and products arising from your use. This includes, but is not limited to, implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

Third-Party Products and Services:

Cairo Security Clan does not warrant, endorse, guarantee, or assume responsibility for any products or services advertised by third parties
within this report, nor for any open-source or third-party software, code, libraries, materials, or information linked to, referenced by,
or accessible through this report, its content, and related services and products. This includes any hyperlinked websites, websites or
applications appearing on advertisements, and Cairo Security Clan will not be responsible for monitoring any transactions between you
and third-party providers. It is recommended that you exercise due diligence and caution when considering any third-party products or
services, just as you would with any purchase or service through any medium.

Disclaimer of Advice:

FOR THE AVOIDANCE OF DOUBT, THIS REPORT, ITS CONTENT, ACCESS, AND/OR USE, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHOULD NOT BE CONSIDERED OR RELIED UPON AS FINANCIAL, INVESTMENT, TAX, LEGAL,
REGULATORY, OR OTHER PROFESSIONAL ADVICE.

2

Cairo Security Clan

3 Executive Summary
This document presents the security review performed by Cairo Security Clan on the Clober protocol.

Clober presents a new algorithm for order book DEX “LOBSTER - Limit Order Book with Segment Tree for Efficient order-matching”
that enables on-chain order matching and settlement on decentralized smart contract platforms. With Clober, market participants can
place limit and market orders in a fully decentralized, trustless way at a manageable cost. Learn more from docs.

The audit was performed using

− manual analysis of the codebase,

− automated analysis tools,

− simulation of the smart contract,

− analysis of edge test cases

9 points of attention, where 2 are classified as Critical, 0 is classified as High, 2 are classified as Medium,1 is classified as Low,3 are
classified as Informational and 1 is classified as Best Practices. The issues are summarized in Fig. 1.

This document is organized as follows. Section 1 About Cairo Security Clan. Section 2 Disclaimer. Section 3 Executive Summary.
Section 4 Summary of Audit. Section 5 Risk Classification. Section 6 Issues by Severity Levels. Section 7 Test Evaluation.

Fig 1: Distribution of issues: Critical (2), High (0), Medium (2), Low (1), Informational (3), Best Practices (1).
Distribution of status: Fixed (9), Acknowledged (0), Mitigated (0), Unresolved (0).

3

https://cairosecurityclan.com
https://www.clober.io/
https://docs.clober.io/

Cairo Security Clan

4 Summary of Audit

Audit Type Security Review
Cairo Version 2.8.0
Final Report 19/11/2024
Repository clober_cairo
Initial Commit Hash c7ca58e30544c69a87ea39c70389b70d384394e1
Final Commit Hash e4029f8c1f11bd19e9bbbdd30c016e6b7e1d9916
Documentation Website documentation
Test Suite Assessment High

4.1 Scoped Files

Contracts
1 /src/book_manager.cairo
2 /src/controller.cairo
3 /src/libraries/book.cairo
4 /src/libraries/book_key.cairo
5 /src/libraries/fee_policy.cairo
6 /src/libraries/hooks.cairo
7 /src/libraries/hooks_list.cairo
8 /src/libraries/lockers.cairo
9 /src/libraries/order_id.cairo
10 /src/libraries/segmented_segment_tree.cairo
11 /src/libraries/storage_map.cairo
12 /src/libraries/tick.cairo
13 /src/libraries/tick_bitmap.cairo
14 /src/libraries/total_claimable_map.cairo
15 /src/utils/math.cairo
16 /src/utils/packed_felt252.cairo

4.2 Issues

Findings Severity Update
1 Attacker could claim any order and steal the claimable base Critical Fixed
2 Attacker could cancel any order and steal the pending quote Critical Fixed
3 Flawed check in function is_valid_hook_address() permits hook without any flags

set
Medium Fixed

4 is_base_remained not set when limit_price reached in function _spend() Medium Fixed
5 Order Id packing can overflow felt252 limit Low Fixed
6 Breaking condition in the while loop in function query() might cause a revert due to

overflow
Informational Fixed

7 Unchecked return values of ERC20 transfer Informational Fixed
8 Confusing parameter name in function reserves_of() Informational Fixed
9 Function lock_data() might return incorrect length due of operator precedence Best Practices Fixed

4

https://github.com/clober-dex/clober_cairo
https://github.com/clober-dex/clober_cairo/tree/c7ca58e30544c69a87ea39c70389b70d384394e1
https://github.com/clober-dex/clober_cairo/pull/27/commits/e4029f8c1f11bd19e9bbbdd30c016e6b7e1d9916
https://docs.clober.io/
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/book_manager.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/controller.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/book.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/book_key.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/fee_policy.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/hooks.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/hooks_list.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/lockers.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/order_id.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/segmented_segment_tree.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/storage_map.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/tick.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/tick_bitmap.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/total_claimable_map.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/utils/math.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/utils/packed_felt252.cairo

Cairo Security Clan

5 Risk Classification
The risk rating methodology used by Cairo Security Clan follows the principles established by the CVSS risk rating methodology. The
severity of each finding is determined by two factors: Likelihood and Impact.

Likelihood measures how likely an attacker will uncover and exploit the finding. This factor will be one of the following values:

a) High: The issue is trivial to exploit and has no specific conditions that need to be met;

b) Medium: The issue is moderately complex and may have some conditions that need to be met;

c) Low: The issue is very complex and requires very specific conditions to be met.

When defining the likelihood of a finding, other factors are also considered. These can include but are not limited to Motive, opportunity,
exploit accessibility, ease of discovery, and ease of exploit.

Impact is a measure of the damage that may be caused if an attacker exploits the finding. This factor will be one of the following values:

a) High: The issue can cause significant damage such as loss of funds or the protocol entering an unrecoverable state;

b) Medium: The issue can cause moderate damage such as impacts that only affect a small group of users or only a particular part
of the protocol;

c) Low: The issue can cause little to no damage such as bugs that are easily recoverable or cause unexpected interactions that cause
minor inconveniences.

When defining the impact of a finding other factors are also considered. These can include but are not limited to Data/state integrity, loss
of availability, financial loss, and reputation damage. After defining the likelihood and impact of an issue, the severity can be determined
according to the table below.

Likelihood
High Medium Low

Im
pa

ct High Critical High Medium
Medium High Medium Low

Low Medium Low Info/Best Practices

To address issues that do not fit a High/Medium/Low severity, Cairo Security Clan also uses three more finding severities: Informational,
Best Practices and Gas

a) Informational findings do not pose any risk to the application, but they carry some information that the audit team intends to
formally pass to the client;

b) Best Practice findings are used when some piece of code does not conform with smart contract development best practices;

b) Gas findings are used when some piece of code uses more gas than it should be or have some functions that can be removed to
save gas.

5

https://cairosecurityclan.con
https://www.first.org/cvss/specification-document
https://cairosecurityclan.com

Cairo Security Clan

6 Issues by Severity Levels
6.1 Critical
6.1.1 Attacker could claim any order and steal the claimable base

File(s): /src/controller.cairo

Description: The Clober protocol uses a Lock Mechanism from UniSwap v4. The controller contract helps users interact with the core
book manager. Users must approve the controller to manage their tokens and NFTs for actions like canceling or claiming orders.

In the book manager, the claim() function checks if the caller is authorized based on NFT ownership:

1 fn claim(ref self: ContractState, id: felt252, hook_data: Span<felt252>) -> u256 {
2 self._check_locker();
3 self
4 .erc721
5 ._check_authorized(
6 self.erc721._owner_of(id.into()), get_caller_address(), id.into()
7);
8 // ...
9 }

However, in the controller contract, anyone can call claim() for any order without needing approval from the NFT owner. This means
an attacker could claim any order and steal the claimable base token:

1 fn claim(
2 ref self: ContractState, order_id: felt252, hook_data: Span<felt252>, deadline: u64
3) {
4 self._check_deadline(deadline);
5 let book_manager = IBookManagerDispatcher {
6 contract_address: self.book_manager.read()
7 };
8 let mut params = ArrayTrait::new();
9 Serde::serialize(@order_id, ref params);

10 Serde::serialize(@hook_data, ref params);
11

12 let mut data = ArrayTrait::new();
13 Serde::serialize(@get_caller_address(), ref data);
14 Serde::serialize(@Actions::Claim, ref data);
15 Serde::serialize(@params, ref data);
16 book_manager.lock(get_contract_address(), data.span());
17 }

Recommendation(s): Consider adding a check to ensure the caller has approval from the NFT owner before allowing them to claim an
order of other users.

Status: Fixed

Update from client: Fixed in this commit.

6

https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/controller.cairo
https://github.com/clober-dex/clober_cairo/pull/13/commits/289b0bdbb184c06ff1bc7616dd091b9c5632a3ce

Cairo Security Clan

6.1.2 Attacker could cancel any order and steal the pending quote

File(s): /src/controller.cairo

Description: The Clober protocol uses a Lock Mechanism from UniSwap v4. The controller contract helps users interact with the core
book manager. Users must approve the controller to manage their tokens and NFTs for actions like canceling or claiming orders.

In the book manager, the cancel() function checks if the caller is authorized based on NFT ownership:

1 fn cancel(ref self: ContractState, params: CancelParams, hook_data: Span<felt252>) -> u256 {
2 self._check_locker();
3 self
4 .erc721
5 ._check_authorized(
6 self.erc721._owner_of(params.id.into()), get_caller_address(), params.id.into()
7);
8 // ...
9 }

However, in the controller contract, anyone can call cancel() for any order without needing approval from the NFT owner. This means
an attacker could cancel any order and take the pending quote:

1 fn cancel(
2 ref self: ContractState,
3 order_id: felt252,
4 left_quote_amount: u256,
5 hook_data: Span<felt252>,
6 deadline: u64
7) {
8 self._check_deadline(deadline);
9 let book_manager = IBookManagerDispatcher {

10 contract_address: self.book_manager.read()
11 };
12 let mut params = ArrayTrait::new();
13 Serde::serialize(@order_id, ref params);
14 Serde::serialize(@left_quote_amount, ref params);
15 Serde::serialize(@hook_data, ref params);
16

17 let mut data = ArrayTrait::new();
18 Serde::serialize(@get_caller_address(), ref data);
19 Serde::serialize(@Actions::Cancel, ref data);
20 Serde::serialize(@params, ref data);
21 book_manager.lock(get_contract_address(), data.span());
22 }

Recommendation(s): Consider adding a check to ensure the caller has approval from the NFT owner before allowing them to cancel an
order.

Status: Fixed

Update from client: Fixed in this commit.

7

https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/controller.cairo
https://github.com/clober-dex/clober_cairo/pull/13/commits/289b0bdbb184c06ff1bc7616dd091b9c5632a3ce

Cairo Security Clan

6.2 Medium
6.2.1 Flawed check in function is_valid_hook_address() permits hook without any flags set

File(s): /src/libraries/hooks.cairo

Description: The is_valid_hook_address() function in the hooks library is responsible for validating hook contract addresses. The cur-
rent implementation checks if the address has at least one flag set by verifying that address_felt252.into() >= Permission::AFTER_-
CLAIM. However, this approach is flawed because it allows any address with bits set beyond bit 9 to pass the validation, even if none of
the first 10 bits (flags) are set.

For example, an address with no bits from 0 to 9 set (flags) but with other bits set can still yield a value greater than AFTER_CLAIM =
0x200. This means that an address could bypass the check while having no valid permission flags set.

1 pub mod Permission {
2 pub const BEFORE_OPEN: u256 = 0x1; // 1 << 0
3 pub const AFTER_OPEN: u256 = 0x2; // 1 << 1
4 pub const BEFORE_MAKE: u256 = 0x4; // 1 << 2
5 pub const AFTER_MAKE: u256 = 0x8; // 1 << 3
6 pub const BEFORE_TAKE: u256 = 0x10; // 1 << 4
7 pub const AFTER_TAKE: u256 = 0x20; // 1 << 5
8 pub const BEFORE_CANCEL: u256 = 0x40; // 1 << 6
9 pub const AFTER_CANCEL: u256 = 0x80; // 1 << 7

10 pub const BEFORE_CLAIM: u256 = 0x100; // 1 << 8
11 pub const AFTER_CLAIM: u256 = 0x200; // 1 << 9
12 }
13

14 fn is_valid_hook_address(self: @Hooks) -> bool {
15 // If a hook contract is set, it must have at least 1 flag set
16 let address_felt252: felt252 = (*self).into();
17 address_felt252 == 0 || address_felt252.into() >= Permission::AFTER_CLAIM // @audit Still allow hook with 0

flag set
18 }

Recommendation(s): Consider modifying the check to

1 - address_felt252 == 0 || address_felt252.into() >= Permission::AFTER_CLAIM
2 + address_felt252 == 0 || (address_felt252.into() & (0x200 - 1)) > 0

Status: Fixed

Update from client: Fixed in this commit.

8

https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/hooks.cairo
https://github.com/clober-dex/clober_cairo/pull/23/commits/107a921dda06447064110c89e94c3f4fce94aa87

Cairo Security Clan

6.2.2 is_base_remained not set when limit_price reached in function _spend()

File(s): /src/controller.cairo

Description: The function _spend() is called inside _limit() to spend as much quote as possible within the given price limit. If the
take_book has insufficient liquidity or the limit_price is reached, the remaining quote is supposed to be used for an order in the
make_book.

1 fn _limit(
2 self: @ContractState,
3 take_book_id: felt252,
4 make_book_id: felt252,
5 limit_price: u256,
6 tick: Tick,
7 mut quote_amount: u256,
8 take_hook_data: Span<felt252>,
9 make_hook_data: Span<felt252>

10) -> (felt252, Span<felt252>) {
11 let (is_quote_remained, spent_quote_amount, tokens) = self
12 ._spend(take_book_id, limit_price, quote_amount, 0, take_hook_data);
13 quote_amount -= spent_quote_amount;
14 if is_quote_remained {
15 let (order_id, _) = self._make(make_book_id, tick, quote_amount, make_hook_data);
16 (order_id, tokens)
17 } else {
18 (0, tokens)
19 }
20 }

However, there is an issue in the _spend() function: when the limit_price is reached, the loop breaks without setting is_base_remained
= true. This prevents the function from properly handling remaining quote. As a result, if not all of the quote is spent (because the
limit price was reached), the _limit() function does not place a new order with the remaining quote, which is the expected behavior.

1 let mut is_base_remained = false;
2

3 while max_base_amount > spent_base_amount {
4 if book_manager.is_empty(book_id) {
5 is_base_remained = true;
6 break;
7 }
8 let tick = book_manager.get_highest(book_id);
9 if limit_price > tick.to_price() { // @audit Not set `is_base_remained = true` before break

10 break;
11 }
12 // ...
13 };

Recommendation(s): Consider modifying the code to set is_base_remained = true before breaking the loop when limit_price is
reached.

Status: Fixed

Update from client: Fixed in this commit.

9

https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/controller.cairo
https://github.com/clober-dex/clober_cairo/pull/15/commits/e5a2241fea7b6f151bc3e43e6147dd717a79f0cf

Cairo Security Clan

6.3 Low
6.3.1 Order Id packing can overflow felt252 limit

File(s): /src/libraries/order_id.cairo

Description: The struct OrderId wanted to be packed into one felt252 to store efficiently.

1 pub struct OrderId {
2 pub book_id: felt252, // u187
3 pub tick: Tick, // i24
4 pub index: u64, // u40
5 }

However, in the function encode(...), the variable book_id assertion only checks if it is lower than 2ˆ192, which is 192 bits long.

1 fn encode(self: OrderId) -> felt252 {
2 // @audit-issue Why lower than 192 bits instead of 187?
3 assert(self.book_id.into() < TWO_POW_192, 'book_id overflow');
4 assert(self.index < TWO_POW_40, 'index overflow');
5 let t = if self.tick.into() < 0_i32 {
6 0x1000000 + self.tick.into()
7 } else {
8 self.tick.into()
9 };

10 assert(t < 0x1000000_i32, 'tick overflow');
11 return self.book_id * TWO_POW_64.into() + t.into() * TWO_POW_40.into() + self.index.into();
12 // @audit-issue Highest possible bit-size 192 + 40 + 24 = 256
13 // @audit-issue Possible packing with max values can be higher than 252 bit felt range
14 }

This can cause possible overflow and revert during the encoding.

Recommendation(s): Consider checking book_id lower than expected bit size.

Status: Fixed

Update from client: Fixed in this commit.

10

https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/order_id.cairo
https://github.com/clober-dex/clober_cairo/pull/25/commits/107f0d4234c999d9edfce0605213ac449b43df75

Cairo Security Clan

6.4 Info
6.4.1 Breaking condition in the while loop in function query() might cause a revert due to overflow

File(s): /src/libraries/segmented_segment_tree.cairo

Description: In the query() function, a while loop is used to perform the query. The break condition is l < 0, where l starts from L-1
and decreases by 1 in each iteration. However, since l is defined as an unsigned integer (u32), it cannot be negative. As a result, when l
is decremented below 0 (i.e., l = -1), the loop will not break as expected. Instead, it will cause the transaction to revert due to overflow.

1 let mut l: u32 = (L - 1).into();
2

3 // @audit `l` is u32, when `l = -1`, it will be an error instead of breaking the loop
4 while l >= 0 {
5 // ...
6 l -= 1;
7 };

Recommendation(s): Use a signed integer for l instead of an unsigned integer.

Status: Fixed

Update from client: Fixed in this commit.

6.4.2 Unchecked return values of ERC20 transfer

File(s): /src/controller.cairo, /src/book_manager.cairo

Description: In the codebase, there are a few ERC20 transfers to move tokens between the users’ wallet and book manager, controller
contracts using transfer() and transfer_from(). These functions return a boolean value indicating whether the transfer succeeded or
not. However, these return values are not currently checked, potentially resulting in unexpected behavior, especially if the token does not
revert on failure.

1 if currency_delta.is_negative() {
2 token_dispatcher
3 .transfer_from(// @audit unsafe transfer
4 user, book_manager.contract_address, currency_delta.abs().into()
5);
6 book_manager.settle(token);
7 }
8

9 currency_delta = book_manager.get_currency_delta(controller_address, token);
10 if !currency_delta.is_negative() {
11 book_manager.withdraw(token, user, currency_delta.abs().into());
12 }
13

14 let balance = token_dispatcher.balance_of(controller_address);
15 if balance > 0 {
16 token_dispatcher.transfer(user, balance); // @audit unsafe transfer
17 }

Recommendation(s): Consider adding a check for the boolean return values.

Status: Fixed

Update from client: Fixed in this commit.

11

https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/segmented_segment_tree.cairo
https://github.com/clober-dex/clober_cairo/pull/21/commits/745b7a595df15892bad04a80dd47575da2426dbf
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/controller.cairo
https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/book_manager.cairo
https://github.com/clober-dex/clober_cairo/pull/27/commits/e4029f8c1f11bd19e9bbbdd30c016e6b7e1d9916

Cairo Security Clan

6.4.3 Confusing parameter name in function reserves_of()

File(s): /src/book_manager.cairo

Description: The function reserves_of() is currently designed to return the reserve of a currency in the book manager. However, it
takes the provider address as an input parameter, which could lead to confusion as the function’s purpose is related to currency reserves.

1 fn reserves_of(self: @ContractState, provider: ContractAddress) -> u256 { // @audit Should be `currency` instead
of `provider`

2 self.reserves_of.read(provider)
3 }

Recommendation(s): Consider renaming the input parameter to currency instead of provider.

Status: Fixed

Update from client: Fixed in this commit.

12

https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/book_manager.cairo
https://github.com/clober-dex/clober_cairo/pull/19/commits/846b372b8aad1c4998b84b6227fb09175c414c38

Cairo Security Clan

6.5 Best Practices
6.5.1 Function lock_data() might return incorrect length due to operator precedence

File(s): /src/libraries/lockers.cairo

Description: The current implementation of the lock_data() function may calculate the length incorrectly due to operator precedence.
As per the Cairo documentation, the & operator has higher precedence than the - operator. This means the calculation will be evaluated
as (packed_u256 & TWO_POW_32.into()) - 1, which is not the intended logic.

1 fn lock_data(self: @Lockers) -> (u32, u128) {
2 let (address_domain, base) = self.get_base_storage_address();
3 let packed: felt252 = Store::read(address_domain, base).unwrap_syscall();
4 let packed_u256: u256 = packed.into();
5 let length: u32 = (packed_u256 & TWO_POW_32.into() - 1).try_into().unwrap(); // @audit & will be executed

before minus
6 let non_zero_delta_count: u128 = (packed_u256 / TWO_POW_32.into()).try_into().unwrap();
7 (length, non_zero_delta_count)
8 }

Recommendation(s): Consider modifying the line to add parentheses

1 - let length: u32 = (packed_u256 & TWO_POW_32.into() - 1).try_into().unwrap();
2 + let length: u32 = (packed_u256 & (TWO_POW_32.into() - 1)).try_into().unwrap();

Status: Fixed

Update from client: Fixed in this commit.

13

https://github.com/clober-dex/clober_cairo/blob/c7ca58e30544c69a87ea39c70389b70d384394e1/src/libraries/lockers.cairo
https://docs.cairo-lang.org/language_constructs/operator-precedence.html
https://github.com/clober-dex/clober_cairo/pull/17/commits/dba81be576f17c0afa238c7104bdb2ea8832e32b

Cairo Security Clan

7 Test Evaluation
7.1 Compilation Output

1 scarb build
2 Compiling clober_cairo v0.1.0 (/clober/Scarb.toml)
3 Finished `dev` profile target(s) in 32 seconds

7.2 Tests Output
1 scarb test
2 Running test clober_cairo (snforge test)
3 Compiling clober_cairo v0.1.0 (/clober/Scarb.toml)
4 Finished `dev` profile target(s) in 37 seconds
5

6

7 Collected 83 test(s) from clober_cairo package
8 Running 83 test(s) from src/
9 [PASS] clober_cairo::tests::book_manager::test_admin::test_whitelist_ownership (gas: ~879)

10 [PASS] clober_cairo::tests::book_manager::test_admin::test_set_default_provider_ownership (gas: ~879)
11 [PASS] clober_cairo::tests::book_manager::test_admin::test_set_default_provider (gas: ~886)
12 [PASS] clober_cairo::tests::book_manager::test_admin::test_whitelist (gas: ~950)
13 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_fee_policy_unmatched1 (gas: ~2348)
14 [PASS] clober_cairo::tests::book_manager::test_make::test_make_with_invalid_tick1 (gas: ~2871)
15 [PASS] clober_cairo::tests::book_manager::test_claim::test_claim_nonexistent_order (gas: ~3337)
16 [PASS] clober_cairo::tests::book_manager::test_cancel::test_cancel_nonexistent_order (gas: ~3337)
17 [PASS] clober_cairo::tests::book_manager::test_cancel::test_success (gas: ~4310)
18 [PASS] clober_cairo::tests::book_manager::test_cancel::test_cancel_to_zero_should_burn_with_zero_claimable (gas:

~3500)
19 [PASS] clober_cairo::tests::book_manager::test_claim::test_success (gas: ~4651)
20 [PASS] clober_cairo::tests::book_manager::test_claim::test_claim_should_burn_with_zero_pending_order (gas: ~4084)
21 [PASS] clober_cairo::tests::book_manager::test_cancel::test_cancel_to_zero_with_partially_taken_order (gas:

~4318)
22 [PASS] clober_cairo::tests::book::test_take (gas: ~993)
23 [PASS] clober_cairo::tests::controller::test_make::test_make (gas: ~3552)
24 [PASS] clober_cairo::tests::book_manager::test_fee::test_maker_QP_taker_QP (gas: ~4472)
25 [PASS] clober_cairo::tests::book_manager::test_fee::test_maker_BP_taker_QP (gas: ~4473)
26 [PASS] clober_cairo::tests::book_manager::test_open::test_success (gas: ~2384)
27 [PASS] clober_cairo::tests::book_manager::test_fee::test_maker_QP_taker_BP (gas: ~4474)
28 [PASS] clober_cairo::tests::book_manager::test_make::test_make_with_invalid_book_key (gas: ~2653)
29 [PASS] clober_cairo::tests::book_manager::test_make::test_make_with_invalid_tick2 (gas: ~2871)
30 [PASS] clober_cairo::tests::book_manager::test_fee::test_maker_BP_taker_BP (gas: ~4471)
31 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_unit_size (gas: ~2348)
32 [PASS] clober_cairo::tests::book::test_make (gas: ~1409)
33 [PASS] clober_cairo::tests::book::test_make_with_zero_unit (gas: ~1)
34 [PASS] clober_cairo::tests::controller::test_limit::test_limit (gas: ~4810)
35 [PASS] clober_cairo::tests::book_manager::test_take::test_success (gas: ~4297)
36 [PASS] clober_cairo::tests::fee_policy::encode (gas: ~1)
37 [PASS] clober_cairo::tests::book::test_calculate_claimable_unit_not_overflow (gas: ~570)
38 [PASS] clober_cairo::tests::book::test_cancel_to_too_large_amount (gas: ~861)
39 [PASS] clober_cairo::tests::book::test_cancel (gas: ~903)
40 [PASS] clober_cairo::tests::controller::test_cancel::test_cancel_all (gas: ~3648)
41 [PASS] clober_cairo::tests::book::test_take_and_clean_tick_bitmap (gas: ~1245)
42 [PASS] clober_cairo::tests::packed_felt252::test_get_u62_out_of_bounds (gas: ~1)
43 [PASS] clober_cairo::tests::book_manager::test_take::test_take_with_invalid_book_key (gas: ~2955)
44 [PASS] clober_cairo::tests::packed_felt252::add_u62_overflow (gas: ~1)
45 [PASS] clober_cairo::tests::packed_felt252::test_update_64_out_of_bounds (gas: ~1)
46 [PASS] clober_cairo::tests::packed_felt252::test_update_62 (gas: ~58)
47 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_fee_policy_boundary1 (gas: ~2348)
48 [PASS] clober_cairo::tests::packed_felt252::test_add_u62_out_of_bounds (gas: ~1)
49 [PASS] clober_cairo::tests::packed_felt252::test_add_u62 (gas: ~65)
50 [PASS] clober_cairo::tests::book_manager::test_take::test_success_with_greater_max_unit (gas: ~3992)
51 [PASS] clober_cairo::tests::packed_felt252::test_sub_u62 (gas: ~64)
52 [PASS] clober_cairo::tests::packed_felt252::test_sub_u62_out_of_bounds (gas: ~1)
53 [PASS] clober_cairo::tests::controller::test_open::test_open (gas: ~2383)
54 [PASS] clober_cairo::tests::controller::test_claim::test_claim (gas: ~4393)

14

Cairo Security Clan

55 [PASS] clober_cairo::tests::packed_felt252::sub_u62_overflow (gas: ~1)
56 [PASS] clober_cairo::tests::segmented_segment_tree::test_get (gas: ~1750)
57 [PASS] clober_cairo::tests::tick_bitmap::test_set (gas: ~404)
58 [PASS] clober_cairo::tests::segmented_segment_tree::test_total (gas: ~1920)
59 [PASS] clober_cairo::tests::segmented_segment_tree::test_query (gas: ~1760)
60 [PASS] clober_cairo::tests::controller::test_take::test_take (gas: ~6218)
61 [PASS] clober_cairo::tests::segmented_segment_tree::test_update (gas: ~2043)
62 [PASS] clober_cairo::tests::total_claimable_map::test_add (gas: ~448)
63 [PASS] clober_cairo::tests::math::test_least_significant_bit (gas: ~5879)
64 [PASS] clober_cairo::tests::book_manager::test_make::test_make_with_invalid_provider (gas: ~2871)
65 [PASS] clober_cairo::tests::book_manager::test_fee::test_maker_QN_taker_QP (gas: ~4472)
66 [PASS] clober_cairo::tests::controller::test_spend::test_spend (gas: ~6284)
67 [PASS] clober_cairo::tests::book_manager::test_make::test_success (gas: ~3677)
68 [PASS] clober_cairo::tests::book::test_claim (gas: ~933)
69 [PASS] clober_cairo::tests::book::test_calculate_claimable_unit (gas: ~946)
70 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_fee_policy_unmatched2 (gas: ~2348)
71 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_fee_policy_unmatched4 (gas: ~2348)
72 [PASS] clober_cairo::tests::order_id::encode (gas: ~1)
73 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_fee_policy_unmatched3 (gas: ~2348)
74 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_fee_policy_boundary4 (gas: ~2348)
75 [PASS] clober_cairo::tests::fee_policy::decode (gas: ~2)
76 [PASS] clober_cairo::tests::book_manager::test_fee::test_maker_BN_taker_BP (gas: ~4471)
77 [PASS] clober_cairo::tests::book_manager::test_admin::test_delist_ownership (gas: ~950)
78 [PASS] clober_cairo::tests::order_id::decode (gas: ~6)
79 [PASS] clober_cairo::tests::book_manager::test_open::test_open_duplicated (gas: ~2571)
80 [PASS] clober_cairo::tests::packed_felt252::test_get_u62 (gas: ~6)
81 [PASS] clober_cairo::tests::fee_policy::calculate_fee (gas: ~23)
82 [PASS] clober_cairo::tests::book_manager::test_fee::test_maker_BP_taker_BN (gas: ~4471)
83 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_fee_policy_boundary2 (gas: ~2348)
84 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_fee_policy_negative_sum (gas: ~2348)
85 [PASS] clober_cairo::tests::book_manager::test_admin::test_delist (gas: ~894)
86 [PASS] clober_cairo::tests::book_manager::test_fee::test_maker_QP_taker_QN (gas: ~4472)
87 [PASS] clober_cairo::tests::book_manager::test_open::test_open_with_invalid_fee_policy_boundary3 (gas: ~2348)
88 [PASS] clober_cairo::tests::book_manager::test_cancel::test_cancel_auth (gas: ~4294)
89 [PASS] clober_cairo::tests::tick_bitmap::test_highest (gas: ~17863)
90 [PASS] clober_cairo::tests::tick_bitmap::test_clear (gas: ~20135)
91 [PASS] clober_cairo::tests::tick::test_tick_to_price (gas: ~28918)
92 Tests: 83 passed, 0 failed, 0 skipped, 0 ignored, 0 filtered out

15

	About Cairo Security Clan
	Disclaimer
	Executive Summary
	Summary of Audit
	Scoped Files
	Issues

	Risk Classification
	Issues by Severity Levels
	Critical
	Attacker could claim any order and steal the claimable base
	Attacker could cancel any order and steal the pending quote

	Medium
	Flawed check in function is_valid_hook_address() permits hook without any flags set
	is_base_remained not set when limit_price reached in function _spend()

	Low
	Order Id packing can overflow felt252 limit

	Info
	Breaking condition in the while loop in function query() might cause a revert due to overflow
	Unchecked return values of ERC20 transfer
	Confusing parameter name in function reserves_of()

	Best Practices
	Function lock_data() might return incorrect length due to operator precedence

	Test Evaluation
	Compilation Output
	Tests Output

